Skip to main content

Reduced Macroscopic Models: The Monodomain and Eikonal Models

  • Chapter
  • First Online:
  • 1765 Accesses

Part of the book series: MS&A ((MS&A,volume 13))

Abstract

In the Bidomain model (3.42), the transmembrane potential v during the excitation phase of the heartbeat exhibits a steep propagating layer spreading throughout the myocardium with a thickness of about 0.5 mm. At every point of the cardiac domain, this upstroke phase lasts about 1 ms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fract. 7, 293–301 (1996)

    Google Scholar 

  2. Alistair, Y., Frangi, A.: Computational cardiac atlases: from patient to population and back. Exp. Physiol. 94(5), 578–596 (2009)

    Google Scholar 

  3. Amato, S., Bellettini, G., Paolini, M.: The nonlinear multidomain model: a new formal asymptotic analysis. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds.) Proceedings of Geometric Partial Differential Equations, pp. 33–74. Edizioni della Normale, Pisa (2013)

    Google Scholar 

  4. Ambrosio, L., Colli Franzone, P., Savaré, G.: On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model. Interfaces Free Bound. 2(3), 213–266 (2000)

    MathSciNet  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematicsi, ETH Zuerich, 2nd edn. Birkhäuser, Basel (2008)

    Google Scholar 

  7. Antzelevitch, C., Fish, J.: Electrical heterogeneity within the ventricular wall. Basic Res. Cardiol. 96, 517–527 (2001)

    Google Scholar 

  8. Antzelevitch, C., Sicouri, S., Lukas, A., Nesterenko, V.V., Lu, D.-W., Di Diego, J.M.: Regional differences in the electrophysiology of ventricular cells: physiological and clinical implications. In: Zipes, D., Jalife, J. (eds.) Cardiac Electrophysiology, chap. 23, pp. 228–245. W. B. Sauders, Philadelphia (1995)

    Google Scholar 

  9. Anyukhovsky, E.P., Sosunov, E.A., Rosen, M.R.: Regional differences in electrophysiological properties of epicardium, midmyocardium and endocardium. Circulation 94, 1981–1988 (1996)

    Google Scholar 

  10. Anyukhovsky, E.P., Sosunov, E.A., Gainullin, R.Z., Rosen, M.R.: The controversial M cell. J. Cardiovasc. Electrophysiol. 10, 244–260 (1999)

    Google Scholar 

  11. Arevalo, H., Rodriguez, B., Trayanova, N.A.: Arrhythmogenesis in the heart: multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. Chaos 17(1), 015103 (2007)

    Google Scholar 

  12. Arisi, G., Macchi, E., Corradi, C., Lux, R.L., Taccardi, B.: Epicardial excitation during ventricular pacing. Relative independence of breakthrough sites from excitation sequence in canine right ventricle. Circ. Res. 71, 840–849 (1992)

    Google Scholar 

  13. Arthurs, C.J., Bishop, M.J., Kay, D.: Efficient simulation of cardiac electrical propagation using high order finite elements. J. Comput. Phys. 231(10), 3946–3962 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Arthurs, C.J., Bishop, M.J., Kay, D.: Efficient simulation of cardiac electrical propagation using high order finite elements. II: adaptive p-version. J. Comput. Phys. 253, 443–470 (2013)

    MathSciNet  Google Scholar 

  15. Asanov, G.S.: Finsler Geometry, Relativity and Gauge Theories. D. Reidel, Dordrecht (1985)

    MATH  Google Scholar 

  16. Ashihara, T., Trayanova, N.A.: Cell and tissue responses to electric shocks. Europace 7(s2), S155–S165 (2005)

    Google Scholar 

  17. Aslanidi, O.V., Colman, M.A., Stott, J., Dobrzynski, H., Boyett, M.R., Holden, A.V., Zhang, H.: 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 107, 156–168 (2011)

    Google Scholar 

  18. Attin, M., Clusin, W.T.: Basic concepts of optical mapping techniques in cardiac electrophysiology. Biol. Res. Nurs. 11(2), 195–207 (2009)

    Google Scholar 

  19. Austin, T.M., Trew, M.L., Pullan, A.J.: Solving the cardiac Bidomain equations for discontinuous conductivities. IEEE Trans. Biomed. Eng. 53(7), 1265–1272 (2006)

    Google Scholar 

  20. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  21. Ayache, N., Delingette, H., Sermesant, M. (eds.): Proceedings of the 5th International Conference on Functional Imaging and Modeling of the Heart, FIMH’09, Nice, 3–5 June 2009. LNCS, vol. 5528. Springer, Berlin (2009)

    Google Scholar 

  22. Azzouzi, A., Coudiere, Y., Turpault, R., Zemzemi, N.: A mathematical model of the Purkinje-muscle junctions. Math. Biosci. Eng. 8(4), 915–930 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Backhvalov, N., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1990)

    Google Scholar 

  24. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc home page. http://www.mcs.anl.gov/petsc (2001)

  25. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 – Revision 2.1.5, Argonne National Laboratory (2002)

    Google Scholar 

  26. Barcilon, V., Chen, D.-P., Eisenberg, R.S., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57(3), 631–648 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Barles, G.: Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differ. Equ. 106, 90–106 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Barr, R.C., Plonsey, R.: Propagation of excitation in idealized two-dimensional tissue. Biophys. J. 45, 1191–1202 (1984)

    Google Scholar 

  29. Barr, R.C., Spach, M.S.: Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res. 42, 661–675 (1978)

    Google Scholar 

  30. Baruffi, S., Spaggiari, S., Stilli, D., Musso, E., Taccardi, B.: The importance of fiber orientation in determining the features of cardiac electric field. In: Antaloczy, Z. (ed.) Modern Electrocardiology, pp. 89–92. Excerpta Medica, Amsterdam (1978)

    Google Scholar 

  31. Baruscotti, M., Barbuti, A., Bucchi, A.: The cardiac pacemaker current. J. Mol. Cell. Cardiol. 48, 55–64 (2008)

    Google Scholar 

  32. Bassetti, F.: Variable time-step discretization of degenerate evolution equations in Banach space. Numer. Funct. Anal. Optim. 24(3–4), 391–426 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Beeler, G.W., Reuter, H.T.: Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. 268, 177–210 (1977)

    Google Scholar 

  34. Beg, M.F., Helm, P.A., McVeigh, E., Miller, M.I., Winslow, R.L.: Computational cardiac anatomy using MRI. Magn. Reson. Med. 52,1167–1174 (2004)

    Google Scholar 

  35. Belhamadia, Y.: A time-dependent adaptive remeshing for electrical waves of the heart. IEEE Trans. Biomed. Eng. 55(2), 443–452 (2008)

    Google Scholar 

  36. Belhamadia, Y., Fortin, A., Bourgault, Y.: Towards accurate numerical method for monodomain models using a realistic heart geometry. Math. Biosci. 220(2), 89–101 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25, 537–566 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Bellettini, G., Paolini, M., Venturini, S.: Some results on surface measures in calculus of variations. Ann. Math. Pura Appl. 170, 329–359 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Bellettini, G., Colli Franzone, P., Paolini, M.: Convergence of front propagation for anisotropic bistable reaction-diffusion equations. Asymptot. Anal. 15, 325–358 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Bellettini, G., Paolini, M., Pasquarelli, F.: Nonconvex mean curvature flow as a formal singular limit of the nonlinear bidomain model. Adv. Differ. Equ. 18(9–10), 895–934 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Beltrami, A.P., et al.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003)

    Google Scholar 

  42. Bendahmane, M., Karlsen, K.H.: Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1, 185–218 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Bendahmane, M., Karlsen, K.H.: Convergence of a finite volume scheme for the bidomain model of cardiac tissue. Appl. Numer. Math. 59(9), 2266–2284 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  45. Berbari, E.J., Lander, P., Scherlag, B.J., Lazzara, R., Geselowitz, D.B.: Ambiguities of epicardial mapping. J. Electrocardiol. 24(Suppl), 16–20 (1992)

    Google Scholar 

  46. Bergmann, O., et al.: Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009)

    Google Scholar 

  47. Bers, D.M.: Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd edn. Kluwer, Dordrecht (2001)

    Google Scholar 

  48. Bertran, G., Biagetti, M.O., Valverde, E., Arini, P.D., Quinteiro, R.A., Lack of effect of conduction direction on action potential durations in anisotropic ventricular strips of pig heart. J. Cardiovasc. Electrophysiol. 13(4), 380–387 (2002)

    Google Scholar 

  49. Biktashev, V.N., Holden, A.V., Mironov, S.F., Pertsov, A.M., Zaitsev, A.V.: Three-dimensional organisation of re-entrant propagation during experimental ventricular fibrillation. Chaos Solitons Fract. 13(8), 1713–1733 (2002)

    Google Scholar 

  50. Bishop, M.J., Gavahan, D.J., Trayanova, N.A., Rodriguez, B.: Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart. J. Electrocardiol. 40, S75–S80 (2007)

    Google Scholar 

  51. Bishop, M.J., Boyle, P.M., Plank, G., Welsh, D.G., Vigmond, E.J.: Modeling the role of the coronary vasculature during external field stimulation. IEEE Trans. Biomed. Eng. 57(10), 2335–2345 (2010)

    Google Scholar 

  52. Bishop, M.J., Plank, G., Burton, R., Schneider, J., Gavaghan, D., Grau, V., Kohl, P.: Development of an anatomically-detailed MRI-derived rabbit ventricular model and assessment of its impact on simulation of electrophysiological function. Am. J. Physiol. Heart Circ. Physiol. 298, H699–H718 (2010)

    Google Scholar 

  53. Bondarenko, V.E., Szigeti, G.P., Bett, G.C., Kim, S.: A computer model for the action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, H1378–H1403 (2004)

    Google Scholar 

  54. Bordas, R., Carpentieri, B., Fotia, G., Maggio, F., Nobes, R., Pitt-Francis, J., Southern, J.: Simulation of cardiac electrophysiology on next-generation high-performance computers. Philos. Trans. R. Soc. A 367(1895), 1951–1969 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Bordas, R.M., Gillow, K., Gavaghan, D., Rodriguez, B., Kay, D.: A Bidomain model of the ventricular specialized conduction system of the heart. SIAM J. Appl. Math. 72(5), 1618–1643 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Beuter, A., Glass, L., Mackey, M.C., Titcombe, M.S.: Nonlinear Dynamics in Physiology and Medicine. Springer, New York (2003)

    MATH  Google Scholar 

  57. Bouchard, S., Jacquemet, V., Vinet, A.: Automaticity in acute ischemia: bifurcation analysis of a human ventricular model. Phys. Rev. E 83, 011911-1-10 (2011)

    Google Scholar 

  58. Boulakia, M., Fernandez, M.A., Gerbeau, J.-F., Zemzemi, N.: Towards the Numerical Simulation of Electrocardiograms. In: FIMH07, Salt Lake City, 7–9 June 2007. LNCS, vol. 4466, pp. 240–249. Springer, Berlin (2007)

    Google Scholar 

  59. Boulakia, M., Fernandez, M.A., Gerbeau, J.-F., Zemzemi, N.: A coupled system of PDEs and ODEs arising in electrocardiograms modelling. Appl. Math. Res. Exp. 2, 1–28 (2008). doi:10.1093/amrx/abn002

    Google Scholar 

  60. Bourgault, Y., Coudiere, Y., Pierre, C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal. Real World Appl. 10, 458–482 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 2nd edn. Springer, New York (2002)

    Google Scholar 

  62. Brezis, H.: Analyse Fonctionnelle, Theory and Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  63. Britton, N.F.: Reaction – Diffusion Equations and Their Applications to Biology. Academic, London (1986)

    MATH  Google Scholar 

  64. Brooks, D.H., Ahmad, G.F., MacLeod, R.S., Maratos, G.M.: Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. Biomed. Eng. 46(1), 3–18 (1999)

    Google Scholar 

  65. Bueno-Orovio, A., Cherry, E., Fenton, F.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253, 544–560 (2008)

    MathSciNet  Google Scholar 

  66. Buist, M., Sands, G., Hunter, P., Pullan, A.: A deformable finite element derived finite difference method for cardiac activation problems. Ann. Biomed. Eng. 31, 577–588 (2003)

    Google Scholar 

  67. Burgess, M.J., Steinhaus, B.M., Spitzer, K.W., Ershler, P.R.: Nonuniform epicardial activation and repolarization properties of in vivo canine pulmonary conus. Circ. Res. 62(2), 233–246 (1988)

    Google Scholar 

  68. Burnes, J.E., Taccardi, B., Rudy, Y.: Noninvasive imaging modality for cardiac arrhythmias. Circulation 102, 2152–2158 (2000)

    Google Scholar 

  69. Burnes, J.E., Taccardi, B., Ershler, P.R., Rudy, Y.: Noninvasive electrocardiographic imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J. Am. Coll. Cardiol. 38, 2071–2078 (2001)

    Google Scholar 

  70. Burton, F.L., Cobbe, S.M.: Dispersion of ventricular repolarization and refractory period. Cardiovasc. Res. 50, 10–23 (2001)

    Google Scholar 

  71. Cabo, C., Rosenbaum, D.: Quantitative Cardiac Electrophysiology. Marcel Dekker, New York (2002)

    Google Scholar 

  72. Cai, X.-C.: Additive Schwarz algorithms for parabolic convection-diffusion equations. Numer. Math. 60(1), 41–61 (1991)

    MathSciNet  MATH  Google Scholar 

  73. Cai, X.-C.: Multiplicative Schwarz methods for parabolic problems. SIAM J. Sci. Comput. 15(3), 587–603 (1994)

    MathSciNet  MATH  Google Scholar 

  74. Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.): Proceedings of Statistical Atlases and Computational Models of the Heart, STACOM’10, Beijing, 20 Sept 2010. LNCS, vol. 6364. Springer, Berlin (2010)

    Google Scholar 

  75. Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.): Proceedings of Statistical Atlases and Computational Models of the Heart, STACOM’11, Toronto, 22 Sept 2011. LNCS, vol. 7085. Springer, Berlin (2012)

    Google Scholar 

  76. Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.): Proceedings of Statistical Atlases and Computational Models of the Heart, STACOM’12, Nice, 5 Oct 2012. LNCS, vol. 7746. Springer, Berlin (2013)

    Google Scholar 

  77. Camelliti, P., Borg, T.K., Kohl, P.: Structural and functional characterization of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 (2005)

    Google Scholar 

  78. Carmeliet, E., Vereecke, J.: Cardiac Cellular Electrophysiology. Kluwer, Dordrecht (2002)

    Google Scholar 

  79. Casten, R.G., Cohen, H., Lagerstrom, P.A.: Perturbation analysis of an approximation to the Hodgkin-Huxley theory. Q. Appl. Math. 32(4), 365–402 (1975)

    MathSciNet  MATH  Google Scholar 

  80. Cates, A.W., Pollard, A.E.: A model study of intramural dispersion of action potential duration in the canine pulmonary conus. Ann. Biomed. Eng. 26, 567–576 (1998)

    Google Scholar 

  81. Cerbai, E., Barbieri, M., Mugelli, A.: Characterization of the hyperpolarization-activated current, I f in ventricular myocytes isolated from hypertensive rats. J. Physiol. 481(3), 585–591 (1994)

    Google Scholar 

  82. Cerbai, E., Barbieri, M., Mugelli, A.: Occurrence and properties of the hyperpolarization-activated current I f in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94, 1674–1681 (1996)

    Google Scholar 

  83. Cerqueira, M.D., Weissman, N.J., Dilsizian, V., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart – a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002)

    Google Scholar 

  84. Chauhan, V.S., Downar, E., Nanthakumar, K., Parker, J.D., Ross, H.J., Chan, W., Picton, P.: Increased ventricular repolarization heterogeneity in patients with ventricular arrhythmia vulnerability and cardiomyopathy: a human in vivo study. Am. J. Physiol. Heart Circ. Physiol. 290(1), H79–H86 (2006)

    Google Scholar 

  85. Chen, X.-Y.: Dynamics of interfaces in reaction diffusion systems. Hiroshima Math. J. 21, 47–83 (1991)

    MathSciNet  MATH  Google Scholar 

  86. Chen, X.-Y.: Generation and propagation of interfaces in reaction-diffusion systems. Trans. Am. Math. Soc. 334(2), 877–913 (1992)

    MATH  Google Scholar 

  87. Chen, P.-S., Moser, K.M., Dembitsky, W.P., Auger, W.R., Daily, P.O., Calisi, C.M., Jamieson, S.W., Feld, G.K.: Epicardial activation and repolarization patterns in patients with right ventricular hypertrophy. Circulation 83, 104–118 (1991)

    Google Scholar 

  88. Cheng, D.K., Tung, L., Sobie, E.A.: Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 277, H351–H362 (1999)

    Google Scholar 

  89. Cheng, L.K., Bodley, J.M., Pullan, A.: Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. IEEE Trans. Biomed. Eng. 50(1), 11–22 (2003)

    Google Scholar 

  90. Cherry, E.M., Greenside, H.S., Henriquez, C.S.: A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84(6), 1343–1346 (2000)

    Google Scholar 

  91. Cherry, E.M., Greenside, H.S., Henriquez, C.S.: Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos 13, 853–865 (2003)

    MathSciNet  MATH  Google Scholar 

  92. Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)

    Google Scholar 

  93. Clancy, C.E., Rudy, Y.: Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400 566–569 (1999)

    Google Scholar 

  94. Clancy, C.E., Rudy, Y.: Na + channel mutation that causes both Brugada and Long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105, 1208–1213 (2002)

    Google Scholar 

  95. Clayton, R.H., Holden, A.V.: Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Prog. Biophys. Mol. Biol. 85(2–3), 473–499 (2004)

    Google Scholar 

  96. Clayton, R.H., Holden, A.V.: Dispersion of cardiac action potential duration and the initiation of re-entry: a computational study. Biomed. Eng. 4, 11 (2005). Online: http://www.biomedical-engineering-oline.com/content/4/1/11

  97. Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96, 19–43 (2008)

    Google Scholar 

  98. Clayton, R.H., Zhuchkova, E.A., Panfilov, A.V.: Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys. Mol. Biol. 90, 378–398 (2006)

    Google Scholar 

  99. Clements, J.C., Nenonen, J., Li, P.K.J., Horacek, B.M.: Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32(7), 984–990 (2004)

    Google Scholar 

  100. Clerc, L.: Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255, 335–346 (1976)

    Google Scholar 

  101. Colli Franzone, P., Guerri, L.: Models of the spreading of excitation in myocardial tissue. CRC Crit. Rev. Biomed. Eng. 20, 211–253 (1992); Pilkington, T.C., Loftis, B., Palmer, T., Budinger, T.F. (eds.) High-Performance Computing in Biomedical Research, pp. 359–401. CRC, Boca Raton (1993)

    Google Scholar 

  102. Colli Franzone, P., Guerri, L.: Spread of excitation in 3-D models of the anisotropic cardiac tissue I: validation of the eikonal approach. Math. Biosci. 113, 145–209 (1993)

    MATH  Google Scholar 

  103. Colli Franzone, P., Magenes, E.: On the inverse potential problem of electrocardiology. Calcolo 16(4), 459–538 (1979)

    MathSciNet  MATH  Google Scholar 

  104. Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Model Methods Appl. Sci. 14(6), 883–911 (2004)

    MathSciNet  MATH  Google Scholar 

  105. Colli Franzone, P., Savaré, G.: Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, Semigroups and Functional Analysis, pp. 49–78. Birkhauser, Basel/Boston (2002)

    Google Scholar 

  106. Colli Franzone, P., Taccardi, B., Viganotti, C.: An approach to inverse calculation of epicardial potentials from body surface maps. Adv. Cardiol. 21, 50–54 (1978)

    Google Scholar 

  107. Colli Franzone, P., Guerri, L., Taccardi, B., Viganotti, C.: The direct and inverse potential problem in electrocardiology. Numerical aspects of some regularization methods and application to data collected in isolated dog heart experiments. Tech. Rep. No. 222, IAN-CNR (1979)

    Google Scholar 

  108. Colli Franzone, P., Guerri, L., Viganotti, C., Macchi, E., Baruffi, S., Spaggiari, S., Taccardi, B.: Potential fields generated by oblique dipole layer modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ. Res. 51(3), 330–346 (1982)

    Google Scholar 

  109. Colli Franzone, P., Guerri, L., Viganotti, C.: Oblique dipole layer potentials applied to electrocardiology. J. Math. Biol. 17(1), 93–124 (1983)

    MathSciNet  MATH  Google Scholar 

  110. Colli Franzone, P., Guerri, L., Magenes, E.: Oblique dipole layer potential for the direct and inverse problems of electrocardiology. Math. Biosci. 68, 23–55 (1984)

    MathSciNet  MATH  Google Scholar 

  111. Colli Franzone, P., Guerri, L., Viganotti, C., Taccardi, B.: Finite element approximation of regularized solution of the inverse potential problem of electrocardiography and applications to experimental data. Calcolo 12(1), 91–186 (1985)

    MathSciNet  Google Scholar 

  112. Colli Franzone, P., Guerri, L., Rovida, S.: Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations. J. Math. Biol. 28, 121–176 (1990)

    MathSciNet  MATH  Google Scholar 

  113. Colli Franzone, P., Guerri, L., Tentoni, S.: Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field. Math. Biosci. 101, 155–235 (1990)

    MATH  Google Scholar 

  114. Colli Franzone, P., Guerri, L., Taccardi, B.: Spread of excitation in a myocardial volume. Simulation studies in a model of anisotropic ventricular muscle activated by point stimulation. J. Cardiovasc. Electrophysiol. 4, 144–160 (1993)

    Google Scholar 

  115. Colli Franzone, P., Guerri, L., Pennacchio, M., Taccardi, B.: Spread of excitation in 3-D models of the anisotropic cardiac tissue II: effects of fiber architecture and ventricular geometry. Math. Biosci. 147, 131–171 (1998)

    MathSciNet  MATH  Google Scholar 

  116. Colli Franzone, P., Guerri, L., Pennacchio, M., Taccardi, B.: Spread of excitation in 3-D models of the anisotropic cardiac tissue III: effects of ventricular geometry and fiber structure on the potential distribution. Math. Biosci. 151, 51–98 (1998)

    MathSciNet  MATH  Google Scholar 

  117. Colli Franzone, P., Guerri, L., Pennacchio, M., Taccardi, B.: Anisotropic mechanisms for multiphasic unipolar electrograms. Simulation studies and experimental recordings. Ann. Biomed. Eng. 28, 1–17 (2000)

    Google Scholar 

  118. Colli Franzone, P., Pennacchio, M., Guerri, L.: Accurate computation of electrograms in the left ventricular wall. Math. Model Methods Appl. Sci. 10(4), 507–538 (2000)

    MathSciNet  MATH  Google Scholar 

  119. Colli Franzone, P., Guerri, L., Taccardi, B.: On the polyphasic character of simulated and experimental electrograms. Biomed. Tech. 46(2), 16–19 (2001)

    Google Scholar 

  120. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: A parallel solver for anisotropic cardiac models. In: Proceedings of the IEEE Computers in Cardiology, Thessaloniki Chalkidiki, 21–24 Sept 2003. vol. 30, pp. 781–784 (2003)

    Google Scholar 

  121. Colli Franzone, P., Guerri, L., Taccardi, B.: Modeling ventricular excitation: axial and orthotropic effects on wavefronts and potentials. Math. Biosci. 188, 191–205 (2004)

    MathSciNet  MATH  Google Scholar 

  122. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Monodomain simulations of excitation and recovery in cardiac blocks with intramural heterogeneity. In: Frangi, A.F., et al. (eds.): FIMH05: Functional Imaging and Modeling of the Heart. LNCS, vol. 3504, pp. 267–277. Springer, Berlin (2005)

    Google Scholar 

  123. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosci. 197, 35–66 (2005)

    MathSciNet  MATH  Google Scholar 

  124. Colli Franzone, P., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.F.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3), 942–962 (2006)

    MathSciNet  MATH  Google Scholar 

  125. Colli Franzone, P., Pavarino, L.F., Savarè, G.: Computational electrocardiology: mathematical and numerical modeling. In: Quarteroni, A., et al. (eds.) Complex Systems in Biomedicine, pp. 187–241. Springer, New York (2006)

    Google Scholar 

  126. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: a simulation study. Math. Biosci. 204(1), 132–165 (2006)

    MathSciNet  MATH  Google Scholar 

  127. Colli Franzone, P., Pavarino, L.F., Scacchi, S., Taccardi, B.: Determining recovery times from transmembrane action potentials and unipolar electrograms in normal heart tissue. In: Sachse, F.B., Seemann, G. (eds.) FIMH’07, Salt Lake City, 7–9 June 2007. LNCS, vol. 4466, pp. 139–149. Springer, Berlin (2007)

    Google Scholar 

  128. Colli Franzone, P., Pavarino, L.F., Scacchi, S., Taccardi, B.: Monophasic action potentials generated by bidomain modeling as a tool for detecting cardiac repolarization times. Am. J. Physiol. Heart Circ. Physiol. 293, H2771–H2785 (2007)

    Google Scholar 

  129. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Dynamical effects of myocardial ischemia in anisotropic cardiac models in three dimensions. Math. Model Methods Appl. Sci. 17(12), 1965–2008 (2007)

    MathSciNet  MATH  Google Scholar 

  130. Colli Franzone, P., Pavarino, L.F., Scacchi, S., Taccardi, B.: Modeling ventricular repolarization: effects of transmural and apex-to-base heterogeneities in action potential durations. Math. Biosci. 214, 140–152 (2008)

    MathSciNet  MATH  Google Scholar 

  131. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model. Math. Biosci. 230(2), 96–114 (2011)

    MathSciNet  MATH  Google Scholar 

  132. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Cardiac excitation mechanisms, wavefront dynamics and strength – interval curves predicted by 3D orthotropic bidomain simulations. Math. Biosci. 235(1), 66–84 (2012)

    MathSciNet  MATH  Google Scholar 

  133. Conrath, C.E., Opthof, T.: Ventricular repolarization: an overview of (patho)physiology, sympathetic effects and genetic aspects. Prog. Biophys. Mol. Biol. 92(3), 269–307 (2006)

    Google Scholar 

  134. Corbin II, L.V., Scher, A.M.: The canine heart as an electrocardiographic generator: dependence on cardiac cell orientation. Circ. Res. 41, 58–67 (1977)

    Google Scholar 

  135. Coronel, R., de Bakker, J.M.T., Wilms-Schopman, F.J.G., Opthof, T., Linnenbank, A.C., Belterman, C.N., Janse, M.J.: Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: experimental evidence to resolve some controversies. Heart Rhythm 3(9), 1043–1050 (2006)

    Google Scholar 

  136. Cortassa, S., Aon, M., B. O’Rourke, Jacques, R., Tseng, H., Marban, E., et al.: A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocytes. Biophys. J. 91, 1564–1598 (2006)

    Google Scholar 

  137. Costa, K.D., K. May-Newman, Farr, D., O’Dell, W.G., McCulloch, A.D., Omens, J.H.: Three-dimensional residual strain in midanterior canine left ventricle. Am. J. Physiol. Heart Circ. Physiol. 42, H1968–H1976 (1997)

    Google Scholar 

  138. Costa, K.D., Holmes, J.W., McCulloch, A.D.: Modelling cardiac mechanical properties in three dimensions. Philos. Trans. R. Soc. Lond. A 359(1783), 1233–1250 (2001)

    MATH  Google Scholar 

  139. Coudiere, Y., Pierre, C.: Stability, convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology. Nonlinear Anal. Real World Appl. 7(4), 916–935 (2006)

    MathSciNet  MATH  Google Scholar 

  140. Coveney, P., Diaz, V., Hunter, P., Viceconti, M.: Computational Biomedicine. Oxford University Press, Oxford (2014)

    Google Scholar 

  141. Cronin, J.: Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  142. Cuppen, J.J.M.: Calculating the isochrones of ventricular depolarization. SIAM J. Sci. Stat. Comput. 5, 105–120 (1984)

    MathSciNet  MATH  Google Scholar 

  143. Cuppen, J.J.M., van Oosterom, A.: Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng. 31(10), 652–659 (1984)

    Google Scholar 

  144. De Ambroggi, L., Musso, E., Taccardi, B.: Body-surface mapping. In: Macfarlane, P.W., Lawrie, T.D.V. (eds.) Comprehensive Electrocardiology, pp. 1015–1049. Pergamon, Oxford (1989)

    Google Scholar 

  145. DeBruin, K.A., Krassowska, W.: Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann. Biomed. Eng. 26, 584–596 (1998)

    Google Scholar 

  146. Dekker, E.: Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ. Res. 27, 811–823 (1970)

    Google Scholar 

  147. Deuflhard, P., Erdmann, B., Roitzsch, R., Lines, G.T.: Adaptive finite element simulation of ventricular fibrillation dynamics. Comput. Vis. Sci. 12(5), 201–205 (2009)

    MathSciNet  Google Scholar 

  148. di Bernardo, D., Murray, A.: Computer model for study of cardiac repolarization. J. Cardiovasc. Electrophys. 11(8), 895–899 (2000)

    Google Scholar 

  149. Di Francesco, D., Noble, D.: A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B 307(1133), 353–398 (1985)

    Google Scholar 

  150. Doi, S., Inoue, J., Pan, Z., Tsumoto, K.: Computational Electrophysiology. Springer, Tokyo (2010)

    MATH  Google Scholar 

  151. Dryja, M., Widlund, O.B.: Multilevel additive methods for elliptic finite element problems. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations – Proceedings of the Sixth GAMM-Seminar, Kiel, 19–21 Jan 1990. Notes on Numerical Fluid Mechanics, vol. 31, pp. 58–69. Vieweg, Braunschweig (1991). 3-528-07631-3

    Google Scholar 

  152. Dryja, M., Widlund, O.B.: Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput. 15(3), 604–620 (1994)

    MathSciNet  MATH  Google Scholar 

  153. Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)

    MathSciNet  MATH  Google Scholar 

  154. Ebihara, L., Johnson, E.A.: Fast sodium current in cardiac muscle: a quantitative description. Biophys. J. 32 779–790 (1980)

    Google Scholar 

  155. Efimov, I.R., Ermentrout, B., Huang, D.T., Salama, G.: Activation and repolarization patterns are governed by different structural characteristics of ventricular myocardium: experimental study with voltage-sensitive dyes and numerical simulations. J. Cardiovasc. Electrophysiol. 7, 512–530 (1996)

    Google Scholar 

  156. Efimov, I.R., Gheng, Y., Van Eagoner, D.R., Mazgalev, T., Tchou, P.J.: Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ. Res. 82, 918–925 (1998)

    Google Scholar 

  157. Efimov, I.R., Gray, R.A., Roth, B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc Electrophysiol. 11, 339–353 (2000)

    Google Scholar 

  158. Efimov, I.E., Kroll, M.W., Tcho, P.J. (eds.): Cardiac Bioelectric Therapy. Springer, New York (2009)

    Google Scholar 

  159. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 324, 289–306 (1906)

    Google Scholar 

  160. Ejima, J., Martin, D., Engle, C., Sherman, Z., Kunimoto, S., Gettes, L.: Ability of activation recovery intervals to assess action potential duration during acute no-flow ischemia in the in situ porcine heart. J. Cardiovasc. Electrophysiol. 99, 832–844 (1998)

    Google Scholar 

  161. El-Sherif, N., Caref, E.B., Yin, H., Estivo, M.: The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome. Tridimensional mapping of activation and recovery patterns. Circ. Res. 79, 474–492 (1996)

    Google Scholar 

  162. El-Sherif, N., Chinushi, M., Caref, E.B., Restivo, M.: Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de points tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. Circulation 96, 4392–4399 (1997)

    Google Scholar 

  163. Endresen, L.P., Hall, K., Hoye, J.S., Myrheim, J.: A theory for the membrane potential of living cells. Eur. Biophys. J. 29, 90–103 (2000)

    Google Scholar 

  164. Entcheva, E., Eason, J., Efimov, I.R., Cheng, Y., Malkin, R., Clayton, F.: Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations an optical mapping. J. Cardiovasc. Electrophysiol. 9, 949–961 (1998)

    Google Scholar 

  165. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia (2002)

    Google Scholar 

  166. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008)

    MathSciNet  MATH  Google Scholar 

  167. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC, New York (1997)

    Google Scholar 

  168. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J.: Computational Cell Biology, 3rd edn. Springer, New York (2005)

    Google Scholar 

  169. Fast, V.G., Kléber, A.G.: Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc. Res. 33, 258–271 (1997)

    Google Scholar 

  170. Fenton, F.H., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998)

    MATH  Google Scholar 

  171. Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12(3), 852–892 (2002)

    Google Scholar 

  172. Fernandez, M.A., Zemzemi, N.: Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation. Math. Biosci. 226, 58–75 (2010)

    MathSciNet  MATH  Google Scholar 

  173. Fife, P.C.: Mathematical Aspect of Reacting and Diffusing Systems. Springer, Berlin (1979)

    Google Scholar 

  174. Fife, P.C.: Dynamics of Internal Layers and Diffusive Interfaces. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 53. SIAM, Philadelphia (1988)

    Google Scholar 

  175. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    MathSciNet  MATH  Google Scholar 

  176. Fish, J.M., Di Diego, J.M., Nesterenko, V., Antzelevich, C.: Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization. Implications for biventricular pacing. Circulation 109, 2136–2142 (2004)

    Google Scholar 

  177. Fischer, G., Tilg, B., Modre, R., Huiskamp, G.J.M., Fetzer, J., Rucker, W., Wach, P.: A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue. Ann. Biomed. Eng. 28(10), 1229–1243 (2000)

    Google Scholar 

  178. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Google Scholar 

  179. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering, pp. 1–85. MacGraw-Hill, New York (1969)

    Google Scholar 

  180. Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.): Proceedings of the Third International Workshop on Functional Imaging and Modeling of the Heart, FIMH’05, Barcelona, 2–4 June 2005. LNCS, vol. 3504. Springer, Berlin (2005)

    Google Scholar 

  181. Franz, M.R.: Monophasic Action Potentials: Bridging Cells to Bedside, pp. 19–45. Futura Publishing Company, Armonk (2000)

    Google Scholar 

  182. Franz, M.R.: What is a monophasic action potential recorded by Franz contact electrode? Cardiovasc. Res. 65, 940–941 (2005)

    MathSciNet  Google Scholar 

  183. Franz, M.R., et al.: Monophasic action potential mapping in human subjects with normal electrocardiograms: direct evidence for the genesis of the T wave. Circulation 75, 379–386 (1987)

    Google Scholar 

  184. Frazier, D.W., Krassowska, W., Chen, P.-S., Wolf, P.D., Danieley, N.D., Smith, W.M., Ideker, R.E.: Transmural activation and stimulus potentials in three-dimensional anisotropic canine myocardium. Circ. Res. 63, 135–146 (1988)

    Google Scholar 

  185. Frazier, D.W., Wolf, P.D., Wharton, J.M., Tang, A.S.L., Smith, W.M., Ideker, R.E.: Stimulus-induced critical point: mechanism for electrical initiation of reentry in normal canine myocardium. J. Clin. Invest. 83, 1039–1052 (1989)

    Google Scholar 

  186. Fu, Z., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on tetrahedral domains. SIAM J. Sci. Comput. 35(5), C473–C494 (2013)

    MathSciNet  MATH  Google Scholar 

  187. Fuller, M.S., Sandor, G., Punske, B., Taccardi, B., MacLeod, R.S., Ershler, P.R., Green, L.S., Lux, R.L.: Estimates of repolarization dispersion from electrocardiographic measurements. Circulation 102(6), 685–691 (2000)

    Google Scholar 

  188. Fuller, M.S., Sandor, G., Punske, B., Taccardi, B., MacLeod, R.S., Ershler, P.R., Green, L.S., Lux, R.L.: Estimates of repolarization and its dispersion from electrocardiographic measurements: direct epicardial assessment in the canine heart. J. Electrocardiol. 33(2), 171–180 (2000)

    Google Scholar 

  189. Fuster, V., Walsh, R.A., Harrington, R.A.: Hurst’s the Heart, 13th edn. MacGraw-Hill, New York (2011)

    Google Scholar 

  190. Garbern, J.C., Lee, R.T.: Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12(6), 689–698 (2013)

    Google Scholar 

  191. Garfinkel, A., Kim, Y.-H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.-H., Karagueuzian, H.S., Weiss, J.N., Chen, P.-S.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U S A 97(11), 6061–6066 (2000)

    Google Scholar 

  192. Gaudesius, G., Miragoli, M., Thomas, S.P., Rohr, S.: Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 93, 421–428 (2003)

    Google Scholar 

  193. Gauthier, L.D., Greenstein, J.L., Winslow, R.L.: Toward an integrative computational model of the guinea pig cardiac myocyte. Front. Physiol. 3, 244 (2012)

    Google Scholar 

  194. Gepstein, L., Hayam, G., Ben-Haim, S.A.: Activation-recovery coupling in the normal swine endocardium. Circulation 96(11), 4036–4043 (1997)

    Google Scholar 

  195. Gerardo Giorda, L., Mirabella, L., Nobile, F., Perego, M., Veneziani, A.: A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comput. Phys. 228(10), 3625–3639 (2009)

    MathSciNet  MATH  Google Scholar 

  196. Gerardo Giorda, L., Perego, M., Veneziani, A.: Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology. Math. Model. Numer. Anal. 45, 309–334 (2011)

    MathSciNet  MATH  Google Scholar 

  197. Geselowitz, D.B.: On the theory of the electrocardiogram. Proc. IEEE 77, 857–876 (1989)

    Google Scholar 

  198. Geselowitz, D.B.: Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model. J. Electrocardiol. 25, 65–67 (1992)

    Google Scholar 

  199. Geselowitz, D.B., Miller, W.T.: A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11, 191–206 (1983)

    Google Scholar 

  200. Ghosh, S., Rudy, Y.: Application of L1-norm regularization to epicardial potential solutions of the inverse electrocardiography problem. Ann. Biomed. Eng. 37(5), 902–912 (2009)

    Google Scholar 

  201. Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. Volume 310 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)

    Google Scholar 

  202. Giga, Y., Goto, S.: Motion of hypersurfaces and geometric equations. J. Math. Soc. Jpn. 44(1), 99–111 (1992)

    MathSciNet  MATH  Google Scholar 

  203. Giga, Y., Sato, M.-H.: Neumann problem for singular degenerate parabolic equations. Differ. Integral Equ. 6(6), 1217–1230 (1993)

    MathSciNet  MATH  Google Scholar 

  204. Giga, Y., Goto, S., Ishii, H., Sato, M.-H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Ind. Univ. Math. J. 40(2), 443–469 (1991)

    MathSciNet  MATH  Google Scholar 

  205. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms. A model study. Circ. Res. 90, 889–896 (2002)

    Google Scholar 

  206. Goldsmith, E.C., et al.: Organization of fibroblasts in the heart. Dev. Dyn. 230(4), 787–794 (2004)

    Google Scholar 

  207. Goto, M., Brooks, C.: Membrane excitability of the frog ventricle examined by long pulses. Am. J. Physiol. Heart Circ. Physiol. 217, H1236–H1245 (1969)

    Google Scholar 

  208. Gotoh, M., Uchida, T., Fan, W., Fishbein, M.C., Karagueuzian, H.S., Chen, P.-S.: Anisotropic repolarization in ventricular tissue. Am. J. Physiol. (Heart Circ. Physiol.) 41, 107–113 (1997)

    Google Scholar 

  209. Grandi, E., Pasqualini, F.S., Bers, D.M.: A novel computational model of the human ventricular action potential and Ca transient. J. Mol. Cell. Cardiol. 48, 112–121 (2010)

    Google Scholar 

  210. Greensite, F.: The mathematical basis for imaging cardiac electrical function. CRC Crit. Rev. Biomed. Eng. 22, 347–399 (1994)

    Google Scholar 

  211. Greensite, F., Huiskamp, G.: An improved method for estimating epicardial potentials from the body surface. IEEE Trans. Biomed. Eng. 45, 98–104 (1998)

    Google Scholar 

  212. Griffith, B.E., Peskin, C.S.: Electrophysiology. Commun. Pure. Appl. Math. 66, 1837–1913 (2013)

    MathSciNet  MATH  Google Scholar 

  213. Guan, S., Lu, Q., Huang, K.: A discussion about the Di Francesco-Noble model. J. Theor. Biol. 189, 27–32 (1997)

    Google Scholar 

  214. Gulrajani, R.M.: Models of the electrical activity of the heart and computer simulation of the electrocardiogram. CRC Crit. Rev. Biomed. Eng. 16, 1–66 (1988)

    Google Scholar 

  215. Gulrajani, R.M.: Bioelectricity and Biomagnetism. Wiley, New York (1998)

    Google Scholar 

  216. Gulrajani, R.M., Roberge, F.A., Savard, P.: The inverse problem of electrocardiography. In: Macfarlane, P.W., Lawrie, T.T.V. (eds.) Comprehensive Electrocardiology, I: chap. 9, pp. 237–288. Pergamon, Oxford (1989)

    Google Scholar 

  217. Han, C., Pogwizd, S.M., Killingsworth, C.R., He, B.: Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canice heart. Am. J. Physiol. Heart Circ. Physiol. 302, H244–H252 (2012)

    Google Scholar 

  218. Harrild, D.M., Henriquez, C.S.: A finite volume model of cardiac propagation. Ann. Biomed. Eng. 28(2), 315–334 (1997)

    Google Scholar 

  219. Harrild, D.M., Henriquez, C.S.: A computer model of normal conduction in the human atria. Circ. Res. 87, e25–e36 (2000)

    Google Scholar 

  220. Harrild, D.M., Penland, R., Henriquez, C.: A flexible method for simulating cardiac conduction in three-dimensional complex geometries. J. Electrocardiol. 33(3), 241–251 (2000)

    Google Scholar 

  221. Haws, C.W., Lux, R.L.: Correlation between in vivo transmembrane action potential durations and activation–recovery intervals from electrograms. Circulation 81, 281–288 (1990)

    Google Scholar 

  222. He, B., Li, G., Zhang, X.: Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans. Biomed. Eng. 50(10), 1190–1202 (2003)

    Google Scholar 

  223. Heidenreich, E.A., Rodriguez, J.F., Gaspar, F.J., Doblaré, M.: Fourth-order compact schemes with adaptive time step for monodomain reaction–diffusion equations. J. Comput. Appl. Math. 216(1), 39–55 (2008)

    MathSciNet  MATH  Google Scholar 

  224. Heijman, J., Volders, P.G.A., Westra, R.L., Rudy, Y.: Local control of β-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca 2+-transient. J. Mol. Cell. Cardiol. 50(5), 863–871 (2011)

    Google Scholar 

  225. Henriquez, C.S.: Simulating the electrical behavior of cardiac tissue using the bidomain model. CRC Crit. Rev. Biomed. Eng. 21, 1–77 (1993)

    MathSciNet  Google Scholar 

  226. Henriquez, C.S., Muzikant, A.L., Smoak, C.K.: Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model. J. Cardiovasc. Electrophysiol. 7(5), 424–444 (1996)

    Google Scholar 

  227. Herron, T.J., Lee, P., Jalife, J.: Optical imaging of voltage and calcium in cardiac cells and tissues. Circ. Res. 110, 609–623 (2012)

    Google Scholar 

  228. Hille, B.: Ionic Channels of Excitable Membranes, 2nd edn. Sinauer Associates Inc., Sunderland (1982)

    Google Scholar 

  229. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Google Scholar 

  230. Hoff, D.: Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations. SIAM J. Numer. Anal. 15, 1161–1177 (1978)

    MathSciNet  MATH  Google Scholar 

  231. Holland, R.P., Brooks, H.: Precordial end epicardial surface potentials during Myocardial ischemia in the pig. A theoretical and experimental analysis of the TQ and ST segments. Circ. Res. 37, 471–480 (1975)

    Google Scholar 

  232. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. A 13(367), 3445–3475 (2009)

    MathSciNet  Google Scholar 

  233. Hooke, N.: Efficient simulation of action potential propagation in a bidomain. Ph.D. thesis, Department of Computer Science, Duke University (1992)

    Google Scholar 

  234. Hooks, D.A., Tomlinson, K.A., Mardsen, S.G., LeGrice, I.J., Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac microstructure. Implications for electrical propagation and defibrillation in the heart. Circ. Res. 91, 331–338 (2002)

    Google Scholar 

  235. Hopenfeld, B., Stinstra, J.G., MacLeod, R.S.: Mechanism for ST depression associated with contiguous subendocardial ischemia. J. Cardiovasc. Electrophysiol. 29, 1200–1206 (2004)

    Google Scholar 

  236. Hormander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1983)

    Google Scholar 

  237. Hoyt, R.H., Cohen, M.L., Saffitz, J.E.: Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ. Res. 64, 563–574 (1989)

    Google Scholar 

  238. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  239. http://commons.wikimedia.org/wiki/File:Wiggers_Diagram.png

  240. http://www.texasheartinstitute.org/HIC/Anatomy/images/fig1_crosslg.jpg

  241. Huiskamp, G., Greensite, F.: A new method for myocardial activation imaging. IEEE Trans. Biomed. Eng. 44, 433–446 (1997)

    Google Scholar 

  242. Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. Springer, New York (2002)

    Google Scholar 

  243. Hund, T.J., Rudy, Y.: Rate transient and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110, 3168–3174 (2004)

    Google Scholar 

  244. Hund, T.J., Kucera, J.P., Otani, N.F., Rudy, Y.: Ionic charge conservation and long-term steady state in hte Luo–Rudy dynamic cell model. Biophys. J. 81, 3324–3331 (2001)

    Google Scholar 

  245. Hunter, P.J., Nash, M.P., Sands, G.B.: Computational electromechanics of the heart. In: Panfilov, A.V., Holden, A.V. (eds.) Computational Biology of the Heart. Wiley, New York (1997)

    Google Scholar 

  246. Hunter, P.J., McCulloch, A.D., ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998)

    Google Scholar 

  247. Hunter, P.J., et al.: A vision and strategy for the virtual physiological human in 2010 and beyond. Philos. Trans. R. Soc. A 368, 2595–2614 (2010)

    Google Scholar 

  248. Hunter, P.J., et al.: A vision and strategy for the virtual physiological human: 2012 update. Interface Focus 3, 1–9 (2013)

    Google Scholar 

  249. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  250. Jack, J.J.B., Noble, D., Tsien, R.W.: Electric Current Flow in Excitable Cells. Clarendon, Oxford (1983)

    Google Scholar 

  251. Jacquemet, V.: An eikonal approach for the initiation of reentrant cardiac propagation in reaction-diffusion models. IEEE Trans. Biomed. Eng. 57(9), 2090–2098 (2010)

    Google Scholar 

  252. Jacquemet, V., Henriquez, C.: Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes. IEEE Trans. Biomed. Eng. 52(8), 1490–1492 (2005)

    Google Scholar 

  253. Jacquemet, V., Kappenberger, L., Henriquez, C.S.: Modeling atrial arrhythmias: impact on clinical diagnosis and therapies. IEEE Rev. Biomed. Eng. 1, 94–114 (2008)

    Google Scholar 

  254. Jafri, S., Rice, J.J., Winslow, R.L.: Cardiac Ca 2+ dynamics: the role of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. 74, 1149–1168 (1998)

    Google Scholar 

  255. Janks D.L., Roth B.J.: Quaterfoil reentry caused by bursting pacing. J. Cardiovasc. Electrophysiol. 17, 1362–1368 (2006)

    Google Scholar 

  256. Janks, D.L., Roth, B.J.: The bidomain theory of pacing. In: Efimov I.R., Kroll M.W., Tchou, J. (eds.) Cardiac Bioelectric Therapy, chap. 2.1, pp. 63–83. Springer, New York (2009)

    Google Scholar 

  257. Janse, M.J.: ST segment mapping and infarct size. Cardiovasc. Res. 45, 190–193 (2000)

    Google Scholar 

  258. Janse, M., Sosunov, E.A., Corornel, R., Opthof, T., Anyukhovsky, E.P., de Bakker J.M.T., Plotnikov, A.N., Shlapakova, I.N., Danilo, P., J.Tijssen, G.P., Rosen, M.R.: Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation 112, 1711–1718 (2005)

    Google Scholar 

  259. Jerome, J.W.: Convergence of successive iterative semidiscretizations for FitzHugh-Nagumo reaction systems. SIAM J. Numer. Anal. 27, 2054–1065 (1984)

    MathSciNet  Google Scholar 

  260. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Google Scholar 

  261. Johnston, P.: Computational Inverse Problems in Electrocardiography. WIT, Southampton (2001)

    Google Scholar 

  262. Johnston, P.R., Kilpatrick, D.: The effect of conductivity values on ST segment shift in subendocardial ischaemia. IEEE Trans. Biomed. Eng. 50, 150–158 (2003)

    Google Scholar 

  263. Johnston, P.R., Kilpatrick, D., Li, C.Y.: The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia. IEEE Trans. Biomed. Eng. 48, 1366–1376 (2001)

    Google Scholar 

  264. Joyner, R.W.: Modulation of repolarization by electrotonic interactions. Jpn. Heart J. 27, 167–183 (1986)

    Google Scholar 

  265. Jungschleger, J.G., Vos, M.A.: Hybrid action potential etiology. J. Cardiovasc. Electrophysiol. 11(8), 946–948 (2000). (Letter to the Editor)

    Google Scholar 

  266. Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., Nenonen, J. (eds.): Proceedings of the First International Workshop on Functional Imaging and Modeling of the Heart, FIMH’01, Helsinki, 15–16 Nov 2001. LNCS, vol. 2230. Springer, Berlin (2001)

    Google Scholar 

  267. Katz, A.M.: Physiology of the Heart. Wolters Kluwer, Philadelphia (2011)

    Google Scholar 

  268. Keener, J.P.: An eikonal-curvature equation for action potential propagation in myocardium. J. Math. Biol. 29, 629–651 (1991)

    MathSciNet  MATH  Google Scholar 

  269. Keener, J.P.: Direct activation and defibrillation of cardiac tissue. J. Theor. Biol. 178, 313–324 (1996)

    Google Scholar 

  270. Keener, J.P., Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8(1), 234–241 (1998)

    MATH  Google Scholar 

  271. Keener, J.P., Panfilov, A.V.: Three–Dimensional propagation in the heart: the effects of geometry and fiber orientation on propagation in myocardium. In: Zipes, D.P., Jalife, J. (eds.) Cardiac Electrophysiology: From Cell to Bedside, pp. 335–347. W. B. Sounders, Philadelphia (1995)

    Google Scholar 

  272. Keener, J.P., Panfilov, A.V.: The effects of geometry and fibre orientation on propagation and extracellular potentials in myocardium. In: Panfilov, A.V., Holden, A.V. (eds.) Computational Biology of the Heart, chap. 8, pp. 235–258. Wiley, New York (1997)

    Google Scholar 

  273. Keener, J.P., Sneyd, J.: Mathematical Physiology, 2nd edn. Springer, New York (2008)

    Google Scholar 

  274. Kerckhoffs, R.C.P. (ed.): Patient-Specific Modeling of the Cardiovascular System: Technology-Driven Personalized Medicine. Springer, New York (2010)

    Google Scholar 

  275. Kerckhoffs, R.C.P., Bovendeerd, B.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T.: Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536–547 (2003)

    Google Scholar 

  276. Kleber, A.G.: ST-segment elevation in the electrocardiogram: a sign of myocardial ischemia. Cardiovasc. Res. 45, 111–118 (2000)

    Google Scholar 

  277. Kleber, A.G., Riegger, C.B.: Electrical constants of arterially perfused rabbit papillar muscle. J. Physiol. 385, 307–324 (1987)

    Google Scholar 

  278. Kleber, A.G., Rudy, Y.: Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84(2), 431–488 (2004)

    Google Scholar 

  279. Kleber, A.G., Janse, M.J., van Capelle, F.J.L., Durrer, D.: Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ. Res. 42(5), 603–613 (1978)

    Google Scholar 

  280. Kneller, J., Ramirez, R.J., Chartier, D., M.Courtemanche, Nattel, S.: Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am. J. Physiol. Heart. Circ. Physiol. 282, H1437–H1451 (2002)

    Google Scholar 

  281. Knisley, S.B.: Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ. Res. 77(6), 1229–1239 (1995)

    Google Scholar 

  282. Koch, C.: Biophysics of Computation. Oxford University Press, New York (1999)

    Google Scholar 

  283. Kogan, B.Y.: Introduction to Computational Cardiology. Springer, New York (2010)

    Google Scholar 

  284. Kohl, P., Sachs, F., Franz, M.R.: Cardiac Mechano-Electric Coupling and Arrhythmias. Oxford University Press, Oxford (2011)

    Google Scholar 

  285. Kondo, M., Nesterenko, V., Antzelevitch, C.: Cellular basis for the monophasic action potential. Which electrode is the recording electrode? Cardiovasc. Res. 63, 635–644 (2004)

    Google Scholar 

  286. Kjekshus, J.K., Maroko, P.R., Sobel, B.E.: Distribution of myocardial injury and its relation to epicardial ST-segment changes after coronary artery occlusion in the dog. Cardiovasc. Res. 6, 490–499 (1972)

    Google Scholar 

  287. Krogh-Masden, T., Cristini, D.J.: Nonlinear dynamics in cardiology. Ann. Rev. Biomed. Eng. 14, 179–203 (2012)

    Google Scholar 

  288. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (2000)

    Google Scholar 

  289. Laflamme, M.A., Murry, C.E.: Heart regeneration. Nature 473 326–335 (2011)

    Google Scholar 

  290. Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithms, and Applications. LNCSE, vol. 16. Springer, Berlin (2000)

    Google Scholar 

  291. Leeson, P.: Cardiovascular Imaging. Oxford University Press, Oxford (2011)

    Google Scholar 

  292. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol. 269(38), H571–H582 (1995)

    Google Scholar 

  293. LeGrice, I.J., Smaill, B.H., Hunter, P.J.: Laminar structure of the heart: a mathematical model. Am. J. Physiol. Heart Circ. Physiol. 272(41), H2466–H2476 (1997)

    Google Scholar 

  294. LeGrice, I.J., Hunter, P.J., Young, A., Smaill, B.H.: The architecture of the heart: a data-based model. Philos. Trans. R. Soc. Lond. A 359, 1217–1232 (2001)

    MATH  Google Scholar 

  295. Leon, L.J., Horacek, B.M.: Computer model of excitation and recovery in the anisotropic myocardium, I: rectangular and cubic arrays of excitable elements. II: excitation in the simplified left ventricle III: arrhythmogenic conditions in the simplified left ventricle. J. Electrocardiol. 14, 1–15, 17–31, 33–41 (1991)

    Google Scholar 

  296. Leri, A., Kajstura, J., Anversa, P.: Role of cardiac stem cells in cardiac phatophysiology: a paradigm shift in human myocardial biology. Circ. Res. 109, 941–961 (2011)

    Google Scholar 

  297. Lesh, M.D., Spear, J.F., Simson, M.B.: A computer model of the electrogram: what causes fractionation? J. Electrocardiol. 21(Suppl), S69–S73 (1988)

    Google Scholar 

  298. Li, D., Li, C.Y., Yong, A.C., Johnston, P.R., Kilpatrick, D.: Epicardial ST depression in acute myocardial ischemia. Circ. Res. 85, 959–964 (1999)

    Google Scholar 

  299. Li, L., Niederer, S., et al.: A mathematical model of the murine ventricular myocyte: a data-driven biophysically based approach applied to mice overexpressing the canine NCX isoform. Am. J. Physiol. HC 299, H1045–H1063 (2010)

    Google Scholar 

  300. Lindemans, F.W., van der Gon, J.J.D.: Current threshold and liminal size in excitation of heart muscle. Cardiovasc. Res. 12(8), 477–485 (1978)

    Google Scholar 

  301. Lindemans, F.W., Heethaar, R.M., van der Gon, J.J.D., Zimmerman, A.N.E.: Site of initial excitation and current threshold as a function of electrode radius in heart muscle. Cardiovasc. Res. 9, 95–104 (1975)

    Google Scholar 

  302. Lines, G.T., Grottum, P., Tweito, A.: Modeling the electric activity of the heart: a bidomain model of the ventricles embedded in a torso. Comput. Vis. Sci. 5, 195–213 (2003)

    MathSciNet  MATH  Google Scholar 

  303. Linge, S., Sundnes, J., Hanslien, M., Lines, G.T., Tveito, A.: Numerical solution of the bidomain equations. Philos. Trans. R. Soc. A 367(1895), 1931–1950 (2009)

    MathSciNet  MATH  Google Scholar 

  304. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  305. Lions, J.L., Magenes, E.: Nonhomogeneous boundary value problems and applications. I. Springer, Berlin (1972)

    Google Scholar 

  306. Livshitz, L.M., Rudy, Y.: Regulation of Ca 2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am. J. Physiol. Heart Circ. Physiol. 292, H2854–H2866 (2007)

    Google Scholar 

  307. Livshitz, L., Rudy, Y.: Uniqueness and stability of action potential models during rest, pacing, and conduction using problem-solving environment. Biophys. J. 97, 1265–1276 (2009)

    Google Scholar 

  308. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    Google Scholar 

  309. Luo, C., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1096 (1994)

    Google Scholar 

  310. Luo, C., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ. Res. 74(6), 1097–1113 (1994)

    Google Scholar 

  311. Lux, R.L., Gettes, L., Mason, J.W.: Understanding proarrhythmic potential in therapeutic drug development: alternate strategies for measuring and tracking repolarization. J. Electrocardiol. 39, S161–S164 (2006)

    Google Scholar 

  312. Macfarlane, P.W., van Oosterom, A., Janse, M., Kligfield, P., Camm, J., Pahlm, O. (eds.): Basic Electrocardiology. Cardiac Electrophysiology, ECG Systems and Mathematical Modeling. Springer, New York (2012)

    Google Scholar 

  313. MacLachlan, M.C., Sundnes, J., Lines, G.T.: Simulation of ST segment changes during subendocardial ischemia using a realistic 3-D cardiac geometry. IEEE Trans. Biomed. Eng. 52, 799–807 (2005)

    Google Scholar 

  314. MacLeod, R.S., Punske, B., Yilmaz, B., Shome, S., Taccardi, B.: The role of heart rate in myocardial ischemia from restricted coronary perfusion. J. Electrocardiol. 34, 43–51 (2001)

    Google Scholar 

  315. Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.H., Yang, M.J., Chen, P.S., Restrepo, J.G., Karma, A., Garfinkel, A., Qu, Z., Weiss, J.N.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94(2), 392–410 (2008)

    Google Scholar 

  316. Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.): Proceedings of the Second International Workshop on Functional Imaging and Modeling of the Heart, FIMH’03, Lyon, 5–6 June 2003. LNCS, vol. 2674. Springer, Berlin (2003)

    Google Scholar 

  317. Malmivuo, J., Plonsey, R.: Bioelectromagnetism. Oxford University Press, Oxford (1995)

    Google Scholar 

  318. Mardal, K.A., Sundnes, J., Langtangen, H.P., Tveito, A.: Systems of PDEs and block preconditioning. In: Langtangen, H.P., Tveito, A. (eds.) Advanced Topics in Computational Partial Differential Equations. LNCSE, vol. 33, chap. 5, pp. 200–236. Springer, Berlin (2004)

    Google Scholar 

  319. Mardal, K.-A., Nielsen, B.F., Cai, X., Tveito, A.: An order optimal solver for the discretized bidomain equations. Numer. Linear Algebr. Appl. 14(2), 83–98 (2007)

    MathSciNet  MATH  Google Scholar 

  320. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, Berlin (1986)

    Google Scholar 

  321. Mascagni, M.: The backward euler method for numerical solution of the Hodgkin–Huxley equations of nerve conduction. SIAM J. Numer. Anal. 27(4), 941–962 (1990)

    MathSciNet  MATH  Google Scholar 

  322. Matta, R.J., Verrier, R.L., Lown, B.: Repetitive extrasystole as an index of vulnerability to ventricular fibrillation. Am. J. Physiol. 230, 1469–1473 (1976)

    Google Scholar 

  323. McAllister, R.E., Noble, D., Tsien, R.W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. 251, 1–59 (1975)

    Google Scholar 

  324. Mehra, R., Furman, S.: Comparison of cathodal, anodal, and bipolar strength-interval curves with temporary and permanent pacing electrodes. Br. Heart J. 41, 468–476 (1979)

    Google Scholar 

  325. Messnarz, B., Seger, M., Modre, R., Fischer, G., Hanser, F., Tilg, B.: A comparison of noninvasive reconstruction of epicarial versus transmembrane potentials in consideration of the null space. IEEE Trans. Biomed. Eng. 51(9), 1609–1618 (2004)

    Google Scholar 

  326. Messnarz, B., Tilg, B., Modre, R., Fischer, G., Hanser, F.: A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans. Biomed. Eng. 51(2), 273–281 (2004)

    Google Scholar 

  327. Metaxas, D.N., Axel, L. (eds.): Proceedings of the 6th International Conference on Functional Imaging and Modeling of the Heart, FIMH’11, New York City, 25–27 May 2011. LNCS, vol. 6666. Springer, Berlin (2011)

    Google Scholar 

  328. Millar, C.K., Kralios, F.A., Lux, R.L.: Correlation between refractory periods and activation-recovery intervals from electrograms – effects of rate and adrenergic interventions. Circulation 72, 1372–1379 (1985)

    Google Scholar 

  329. Miller, W.T., Geselowitz, D.B.: Simulation studies of the electrocardiogram I. The normal heart. Circ. Res. 43(2), 301–315 (1978)

    Google Scholar 

  330. Miragoli, M., Gaudesius, G., Rohr, S.: Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ. Res. 98, 801–810 (2006)

    Google Scholar 

  331. Mirams, G.R., et al.: Chaste: an open source C plus plus library for computational physiology and biology. PLoS Comput. Biol. 9(3), e100297 (2013)

    MathSciNet  Google Scholar 

  332. Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)

    MATH  Google Scholar 

  333. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Google Scholar 

  334. Miura, R.H.: Accurate computation of stable solitary waves for the FitzHugh–Nagumo equations. J. Math. Biol. 13, 247–269 (1982)

    MathSciNet  MATH  Google Scholar 

  335. Modre, R., Tilg, B., Fischer, G., Wach, P.: Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans. Biomed. Eng. 49(10), 1153–1161 (2002)

    Google Scholar 

  336. Moore, P.K.: An adaptive finite element method for parabolic differential systems: some algorithmic considerations in solving in three space dimensions. SIAM J. Sci. Comput. 21(4), 1567–1586 (2000)

    MATH  Google Scholar 

  337. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  338. Munteanu, M.: Overlapping additive Schwarz methods for nonlinear parabolic reaction-diffusion problems. Ph.D. thesis, Department of Mathematics, University of Milano (2008)

    Google Scholar 

  339. Munteanu, M., Pavarino, L.F.: Implicit parallel solvers in computational electrocardiology. In: Carja, O., Vrabie, I.I. (eds.) Applied Analysis and Differential Equations, pp. 255–266. World Scientific, Singapore (2007)

    Google Scholar 

  340. Munteanu, M., Pavarino, L.F.: Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. Math. Model Methods Appl. Sci. 19(7), 1065–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  341. Munteanu, M., Pavarino, L.F., Scacchi, S.: A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(5), 3861–3883 (2009)

    MathSciNet  MATH  Google Scholar 

  342. Murillo, M., Cai, X.: A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Linear Algebr. Appl. 11, 261–277 (2004)

    MathSciNet  MATH  Google Scholar 

  343. Murthy, M.K.V., Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordreà coefficients discontinus. Ann. Ist. Fourier XV, 189–258 (1965)

    Google Scholar 

  344. Muzikant, A., Hsu, E.W., Wolf, P.D., Henriquez, C.S.: Region specific modeling of cardiac muscle: comparison of simulated and experimental potentials. Ann. Biomed. Eng. 30, 867–883 (2002)

    Google Scholar 

  345. Nayak, A.R., Shajahan, T.K., Panfilov, A.V., Pandit, R.: Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts. PLoS One 8(9), e72950 (2013)

    Google Scholar 

  346. Nelson, C.V., Gezelowitz, D.B.: The Theoretical Basis of Electrocardiology. Clarendon, Oxford (1976)

    Google Scholar 

  347. Nesterenko, V.V., Kondo, M., Antzelevitch, C.: Biophysical basis for monophasic action potential. Cardiovasc. Res. 65, 942–944 (2005)

    Google Scholar 

  348. Neu, J.S., Krassowska, W.: Homogenization of syncitial tissues. CRC Crit. Rev. Biomed. Eng. 21(2), 137–199 (1993)

    Google Scholar 

  349. Neunlist, M., Tung, L.: Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys. J. 68, 2310–2311 (1995)

    Google Scholar 

  350. Ni, Q., MacLeod, R.S., Punske, B.B., Taccardi, B.: Computing and visualizing electric potentials and current pathways in the Thorax. J. Electrocard. 33, 189–197 (2000)

    Google Scholar 

  351. Niederer, S., Smith, N.: A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys. J. 92, 4030–4044 (2007)

    Google Scholar 

  352. Nielsen, I.J., Le Grice, P.M.F., Hunter, P.J., Smaill, B.H.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Heart Circ. Physiol. 260, H1365–H1378 (1991)

    Google Scholar 

  353. Nielsen, B.F., Cai, X., Sundnes, J., Tveito, A.: Toward a computational method for imaging the extracellular potassium concentration during regional ischemia. Math. Biosci. 220, 118–130 (2009)

    MathSciNet  MATH  Google Scholar 

  354. Nielsen, B.F., Lysaker, M., Grøttum, P.: Computing ischemic regions in the heart with the bidomain model: first step toward validation. IEEE Trans. Med. Imag. 32(6), 1085–1096 (2013)

    Google Scholar 

  355. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. 160, 317–352 (1962)

    Google Scholar 

  356. Noble, D., Rudy, Y.: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. R. Soc. Lond. A 359, 1127–1142 (2001)

    Google Scholar 

  357. Noble, D., Noble, S., Bett, C., Earm, Y.E., Ko, W.K., So, I.K.: The role of sodium-calcium exchange during the cardiac action potential. Ann. NY Acad. Sci. 639, 334–354 (1991)

    Google Scholar 

  358. Noble, D., Varghese, A., Kohl, P., Noble, P.J.: Improved guinea-pig ventricular cell model incorporating a diadic space, iKr & iKs, and lenght- & tension-dependent processes. Can. J. Cardiol. 14, 123–134 (1998)

    Google Scholar 

  359. Nochetto, R.H., Savarè, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53(5), 525–589 (2000)

    MATH  Google Scholar 

  360. Nygren, A., Fiset, C., Firek, L., Clark, J.W., Lindblad, D.S., Clark, R.B., Giles, W.R.: Mathematical Model of an Adult Human Atrial Cell. Circ. Res. 82, 63–81 (1998)

    Google Scholar 

  361. O’Hara, T., Virag, L., Varro, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7(5), 1–29 (2011)

    Google Scholar 

  362. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  363. Opthof, T., Coronel, R., Wilms-Schopman, F.J.G., Plotnikov, A.N., Shlapakova, I.N., Danilo, P., Rosen, M.R., Janse, M.J.: Dispersion of repolarization in canine ventricle and the electrocardiographic T wave: T pe interval does not reflect transmural dispersion. Heart Rhythm 4, 341–348 (2007)

    Google Scholar 

  364. Osaka, T., Kodama, I., Tsuboi, N., Toyama, J., Yamada, K.: Effects of activation sequence and anisotropic cellular geometry on the repolarization phase of action potential of dog ventricular muscle. Circulation 76(1), 226–236 (1987)

    Google Scholar 

  365. Osher, S., Fedkin, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Google Scholar 

  366. Ourselin, S., Rueckert, D., Smith, N. (eds.): Proceedings of the 7th International Conference on Functional Imaging and Modeling of the Heart, FIMH’13, London, 20–22 June 2013. LNCS, vol. 7945. Springer, Berlin (2013)

    Google Scholar 

  367. Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6), 3029–3051 (2001)

    Google Scholar 

  368. Panfilov, A.V.: Spiral breakup as a model of ventricular fibrillation. Chaos 8, 57–64 (1998)

    MATH  Google Scholar 

  369. Panfilov, A.V., Holden, A.V.: Computational Biology of the Heart. Wiley, New York (1997)

    MATH  Google Scholar 

  370. Park, J.-H., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)

    MathSciNet  MATH  Google Scholar 

  371. Pavarino, L.F., Colli Franzone, P.: Parallel solution of cardiac reaction-diffusion models. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. LNCSE, vol. 40, pp. 669–676. Springer, Berlin (2004)

    Google Scholar 

  372. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(1), 420–443 (2008)

    MathSciNet  MATH  Google Scholar 

  373. Pavarino, L.F., Scacchi, S.: Parallel multilevel Schwarz and block preconditioners for the Bidomain parabolic-parabolic and parabolic-elliptic formulations. SIAM J. Sci. Comput. 33(4), 1897–1919 (2011)

    MathSciNet  MATH  Google Scholar 

  374. Payne, L.E.: Improperly Posed Problems in Partial Differential Equations. PA Saunders, Philadelphia (1975)

    MATH  Google Scholar 

  375. Penland, R., Harrild, D., Henriquez, C.: Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume element discretization. Comput. Vis. Sci. 4, 215–226 (2002)

    MathSciNet  MATH  Google Scholar 

  376. Pennacchio, M.: A nonconforming domain decomposition method for the cardiac potential problem. In: Proceedings of IEEE Computers in Cardiology, Rotterdam, 23–26 Sept 2001, vol. 28, pp. 537–540 (2001)

    Google Scholar 

  377. Pennacchio, M.: The mortar finite element method for the cardiac “bidomain” model of extracellular potential. J. Sci. Comput. 20(2), 191–210 (2004)

    MathSciNet  MATH  Google Scholar 

  378. Pennacchio, M., Savarè, G., Colli Franzone, P.: Multiscale modeling for the electrical activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2006)

    MATH  Google Scholar 

  379. Pennacchio, M., Simoncini, V.: Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math. 145, 49–70 (2002)

    MathSciNet  MATH  Google Scholar 

  380. Pennacchio, M., Simoncini, V.: Substructuring preconditioners for mortar discretization of degenerate evolution problem. J. Sci. Comput. 36, 391–419 (2008)

    MathSciNet  MATH  Google Scholar 

  381. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the bidomain reaction–diffusion system. Appl. Numer. Math. 59, 3033–3050 (2009)

    MathSciNet  MATH  Google Scholar 

  382. Pennacchio, M., Simoncini, V.: Fast structured AMG preconditioning for the bidomain model in electrocadiology. SIAM J. Sci. Comput. 33, 721–745 (2011)

    MathSciNet  MATH  Google Scholar 

  383. Peskin, C.S.: Mathematical Aspects of Heart Physiology. Lecture Notes of the Courant Institute of Mathematical Sciences, New York University, New York (1975)

    MATH  Google Scholar 

  384. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    MathSciNet  MATH  Google Scholar 

  385. Peskin, C.S., McQueen, D.M.: Cardiac fluid dynamics. Crit. Rev. Biomed. Eng. 20, 451–459 (1992)

    Google Scholar 

  386. Pilkington, T.C., Plonsey, R.: Engineering Contributions to Biophysical Electrocardiography. IEEE, New York (1982)

    Google Scholar 

  387. Pilkington, T.C., Loftis, B., Palmer, T., Budinger, T.F.: High-Performance Computing in Biomedical Research. CRC, Boca Raton (1993)

    Google Scholar 

  388. Plank, G., Burton, R.A.B., Hales, P., Bishop, M., Mansoori, T., Bernabeu, M.O., Garny, A., Prassl, A.J., Bollendorsff, C., Mason, F., Mahmood, F., Rodriguez, B., Grau, V., Schneider, J.E., Gavaghan, D., Kohl, P.: Generation of histo-anatomically representative models of the individual heart: tools and application. Philos. Trans. R. Soc. A 367(1895), 2257–2292 (2009)

    MATH  Google Scholar 

  389. Plank, G., Liebmann, M., Weber dos Santos, M.O., Vigmond, E.J., Haase, G.: Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    Google Scholar 

  390. Plank, G., Prassl, A., Hofer, E., Trayanova, N.A.: Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys. J. 94, 1904–1915 (2008)

    Google Scholar 

  391. Plonsey, R.: Bioelectric sources arising in excitable fibers (Alza lecture). Ann. Biomed. Eng. 16, 519–546 (1988)

    Google Scholar 

  392. Plonsey, R., Barr, R.C.: Current flow patterns in two-dimensional anisotropic bisyncitia with normal and extreme conductivities. Biophys. J. 45, 557–571 (1984)

    Google Scholar 

  393. Plonsey, R., Barr, R.C.: Bioelectricity: A Quantitative Approach. Springer, New York (2007)

    Google Scholar 

  394. Plonsey, R., Heppner, D.: Consideration of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29, 657–664 (1967)

    Google Scholar 

  395. Poelzing, S., Rosenbaum, D.S.: Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am J. Physiol. Heart Circ. Physiol. 286, H2001–H2009 (2004)

    Google Scholar 

  396. Poelzing, S., Rosenbaum, D.S.: Altered connexin43 expression produces arrhythmia substrate in heart failure. Am. J. Physiol (Heart Circ. Physiol) 287, H1762–H1770 (2004)

    Google Scholar 

  397. Pollard, A.E., Hooke, N., Henriquez, C.S.: Cardiac propagation simulation. CRC Crit. Rev. Biomed. Eng. 20(3–4), 171–210 (1992)

    Google Scholar 

  398. Pollard, A.E., Burgess, M.J., Spitzer, K.W.: Computer simulations of three-dimensional propagation in ventricular myocardium. Circ. Res. 72(4), 744–756 (1993)

    Google Scholar 

  399. Potse, M., Dubè, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of Monodomain and Bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2434 (2006)

    Google Scholar 

  400. Potse, M., Vinet, A., Opthof, T., Coronel, R.: Validation of a simple model for the morphology of the T wave in unipolar electrograms. Am. J. Physiol. Heart Circ. Physiol. 297(2), H792–H801 (2009)

    Google Scholar 

  401. Pressler, M.L., Munster, P.N., Huang, X.-D.: Gap junction distribution in the heart: functional relevance. In: Zipes, D., Jalife, J. (eds.) Cardiac Electrophysiology, chap. 16, pp. 144–151. W. B. Sauders, Philadelphia (1995)

    Google Scholar 

  402. Priebe, L., Beuckelmann, D.J.: Simulation study of cellular electrical properties in heart failure. Circ. Res. 82, 1206–1223 (1998)

    Google Scholar 

  403. Prinzmetal, M., Toyoshima, A., Ekmekci, Y., Mizumo, Y., Nagaya, T.: Myocardial ischemia. Nature of ischemic electrocardiographic patterns in the mammalian ventricles as determined by intracellular electrographic and metabolic changes. Am. J. Cardiol. 8, 493–503 (1961)

    Google Scholar 

  404. Prior, P., Roth, B.J.: Calculation of optical signal using three-dimensional bidomain/diffusion model reveals distortion of the transmembrane potential. Biophys. J. 95, 2097–2102 (2008)

    Google Scholar 

  405. Puglisi, J.L., Bers, D.M.: LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am. J. Physiol. Cell Physiol. 281(6), C2049–C2060 (2001)

    Google Scholar 

  406. Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically Modelling the Electrical Activity of the Heart. World Scientific, Singapore (2005)

    Google Scholar 

  407. Pullan, A.J., Cheng, L.K., Nash, M.P., Ghodrati, A., MacLeod, R.S., Brooks, D.H.: The inverse problem of electrocardiography. In: Comprehensive Electrocardiology, pp. 299–344. Springer, New York (2010)

    Google Scholar 

  408. Punske, B.B., Ni, Q., Lux, R.L., MacLeod, R.S., Ershler, P.R., Dustman, T.J., Allison, M.J., Taccardi, B.: Spatial methods of epicardial activation time determination in normal hearts. Ann. Biomed. Eng. 31(7), 781–792 (2003)

    Google Scholar 

  409. Puwal, S., Roth, B.J.: Forward Euler stability of the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 54(5), 951–953 (2007)

    Google Scholar 

  410. Qu, Z., Garfinkel, A.: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46(9), 1166–1168 (1999)

    Google Scholar 

  411. Qu, Z., Kill, J., Xie, F., Garfinkel, A., Weiss, J.N.: Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. Biophys. J. 78, 2761–2775 (2000)

    Google Scholar 

  412. Qu, Z., Xie, F., Garfinkel, A., Weiss, J.N.: Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model. Ann. Biomed. Eng. 28, 755–771 (2000)

    Google Scholar 

  413. Quan, W., Evans, S.J., Hastings, H.M.: Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition. IEEE Trans. Biomed. Eng. 45, 372–385 (1998)

    Google Scholar 

  414. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  415. Ramanathan, C., Ghanem, R.N., Jia, P., Ryu, K., Rudy, Y.: Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10(4), 422–428 (2004)

    Google Scholar 

  416. Ranjan, R., Tomaselli, G.F., Marban, E.: A novel mechanism of anode-break stimulation predicted by bidomain modeling. Circ. Res. 84, 153–156 (1999)

    Google Scholar 

  417. Rappel, W.J.: Filament instability and rotational tissue anisotropy: a numerical study using detailed cardiac models. Chaos 11(1), 71–80 (2001)

    MathSciNet  MATH  Google Scholar 

  418. Rasmusson, R.I., Clark, J.W., Giles, W.R., Robinson, K., Clark, R.B., Shibata, E.F., Campbell, D.L.: A mathematical model of electrophysiological activity in a bullfrog atrial cell. Am. J. Physiol. 259, H370–H389 (1990)

    Google Scholar 

  419. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Kock, C., et al. (eds.) Methods in Neuronal Modelling: From Synapses to Networks. MIT, Boston (1998)

    Google Scholar 

  420. Roberts, D., Scher, A.M.: Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res. 50, 342–351 (1982)

    Google Scholar 

  421. Roberts, D., Hersch, L.T., Scher, A.M.: Influence of cardiac fiber orientation on wave front voltage, conduction velocity and tissue resistivity. Circ. Res. 44, 701–712 (1979)

    Google Scholar 

  422. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Google Scholar 

  423. Rohr, S.: Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc. Res. 62, 309–322 (2004)

    Google Scholar 

  424. Rohr, S.: Cardiac fibroblasts in cell culture systems: myofibroblasts all along? J. Cardiovasc. Pharmacol. 57(4), 389–399 (2011)

    MathSciNet  Google Scholar 

  425. Romero, D., Sebastian, R., Bijnens, B.H., et al.: Effects of the Purkinje system and cardiac geometry on biventricular pacing: a model study. Ann. Biomed. Eng. 38(4), 1388–1398 (2010)

    Google Scholar 

  426. Roth, B.J.: The electrical potential produced by a strand of cardiac muscle: a bidomain analysis. Ann. Biomed. Eng. 16, 609–637 (1988)

    Google Scholar 

  427. Roth, B.J.: A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans. Biomed. Eng. 42, 1174–1184 (1995)

    Google Scholar 

  428. Roth, B.J.: Strength-Interval curve for cardiac tissue predicted using the bidomain model. J. Cardiovasc. Electrophysiol. 7, 722–737 (1996)

    Google Scholar 

  429. Roth, B.J.: Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J. Cardiovasc. Electrophysiol. 8, 768–778 (1997)

    Google Scholar 

  430. Roth, B.J., Chen, J.: Mechanism of anode break excitation in the heart: the relative influence of membrane and electrotonic factors. J. Biol. Syst. 7(4), 541–552 (1999)

    Google Scholar 

  431. Roth, B.J., Krassowska, W.: The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential. Chaos 8, 204–220 (1998)

    Google Scholar 

  432. Roth, B.J., Patel, S.G.: Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J. Cardiovasc. Electrophysiol. 14, 1351–1355 (2003)

    Google Scholar 

  433. Roth, B.J., Pertsov, A.M.: Hybrid modeling of electrical and optical behavior in the heart. Physica D 238, 1019–1027 (2009)

    MathSciNet  MATH  Google Scholar 

  434. Roth, B.J., Wikswo, J.P., Jr.: A bidomain model for the extracellular potential and magnetic field of cardiac tissue. IEEE Trans. Biomed. Eng. 33(4), 467–469 (1986)

    Google Scholar 

  435. Roth, B.J., Wikswo, J.P., Jr.: Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41(3), 232–240 (1994)

    Google Scholar 

  436. Roth, B.J., Lin, S.-F., Wikswo, J.P., Jr.: Unipolar stimulation of cardiac tissue. J. Electrocardiol. 31(Suppl), 6–12 (1998)

    Google Scholar 

  437. Roux, B., Allen, T., Berneche, S.: Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37(1), 15–103 (2001)

    Google Scholar 

  438. Rubinstein, I.: Electro-Diffusion of Ions. SIAM, Philadelphia (1990)

    Google Scholar 

  439. Rudy, Y.: The electrocardiogram and its relationship to excitation of the heart. In: Sperelakis, N. (ed.) Physiology and Pathophysiology of the Heart, 3rd edn., chap. 11, pp. 201–239. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  440. Rudy, Y.: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ. Res. 112, 863–874 (2013)

    Google Scholar 

  441. Rudy, Y., Messinger-Rapport, B.J.: The inverse problem in electrocardiography: solutions in terms of epicardial potentials. CRC Crit. Rev. Biomed. Eng. 16(3), 215–268 (1988)

    Google Scholar 

  442. Rudy, Y., Oster, H.S.: The electrocardiographic inverse problem. CRC Crit. Rev. Biomed. Eng. 20, 25–45 (1992)

    Google Scholar 

  443. Rudy, Y., Silva, J.R.: Computational biology in the study of cardiac ion channels and cell electrophysiology. Q. Rev. Biophys. 39(1), 57–116 (2006)

    Google Scholar 

  444. Rushmer, R.F.: Structure and Function of the Cardiovascular System, 2nd edn. W. B. Saunders, Philadelphia (1976)

    Google Scholar 

  445. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  446. Sachse, F.B.: Computational Cardiology. Modeling of Anatomy, Electrophysiology, and Mechanics. LNCS, vol. 2966. Springer, Berlin (2004)

    Google Scholar 

  447. Sachse, F.B., Seemann, G. (eds.): Proceedings of the 4th International Conference on Functional Imaging and Modeling of the Heart, FIMH’07, Salt Lake City, 7–9 June 2007. LNCS, vol. 4466. Springer, Berlin (2007)

    Google Scholar 

  448. Saffitz, J.E., Kanter, H.L., Green, K.G., Tolley, T.K., Beyer, E.C.: Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 74, 1065–1070 (1994)

    Google Scholar 

  449. Saleheen, H.I., Ng, K.T.: A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues. IEEE Trans. Biomed. Eng. 45(1), 15–25 (1998)

    Google Scholar 

  450. Sambelashvili, A., Efimov, I.R.: Dynamics of virtual electrode-induced scroll-wave reentry in a 3D bidomain model. Am. J. Physiol Heart Circ. Physiol. 287, H1570–H1581 (2004)

    Google Scholar 

  451. Sambelashvili, A., Nikolsky, V.P., Efimov, I.R.: Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am. J. Physiol Heart Circ. Physiol. 286, H2183–H2194 (2004)

    Google Scholar 

  452. Sampson, K.J., Henriquez, C.S.: Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 289, H350–H360 (2005)

    Google Scholar 

  453. Samson, W., Scher, A.: Mechanism of ST-segment alteration during acute myocardial injury. Circ. Res. 8, 780–787 (1960)

    Google Scholar 

  454. Sanchez-Palencia, E., Zaoui, A.: Homogenization Techniques for Composite Media. Lectures Notes in Physics, vol. 272. Springer, Berlin (1987)

    Google Scholar 

  455. Sanfelici, S.: Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology. Numer. Methods Part. Differ. Equ. 18, 218–240 (2002)

    MathSciNet  MATH  Google Scholar 

  456. Sanfelici, S.: Numerical simulations of fractioned electrograms and pathological cardiac action potential. J. Theor. Med. 4(3), 167–181 (2002)

    MATH  Google Scholar 

  457. Savaré, G.: Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6, 377–418 (1996)

    MathSciNet  MATH  Google Scholar 

  458. Scacchi, S.: A hybrid multilevel Schwarz method for the bidomain model. Comput. Methods Appl. Mech. Eng. 197(45–48), 4051–4061 (2008)

    MathSciNet  MATH  Google Scholar 

  459. Scacchi, S.: A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. Comput. Methods Appl. Mech. Eng. 200(5–8), 717–725 (2011)

    MathSciNet  MATH  Google Scholar 

  460. Scacchi, S., Colli Franzone, P., Pavarino, L.F., Taccardi, B.: A reliability analysis of cardiac repolarization time markers. Math. Biosci. 219(2), 113–128 (2009)

    MathSciNet  MATH  Google Scholar 

  461. Scacchi, S., Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Computing cardiac recovery maps from electrograms and monophasic action potentials under heterogeneous and ischemic conditions. Math. Model Methods Appl. Sci. 20(7), 1089–1127 (2010)

    MathSciNet  MATH  Google Scholar 

  462. Scher, A.M.: Excitation of the heart. In: Nelson, C.V., Geselowitz, D.B. (eds.) The Theoretical Basis of Electrocardiology, pp. 44–67. Clarendon, Oxford (1976)

    Google Scholar 

  463. Schmitt, O.H.: Biological information processing using the concept of interpenetrating domains. In: Leibovich, K.N. (ed.) Information Processing in the Nervous System, pp. 325–331. Springer, New York (1969)

    Google Scholar 

  464. Schuss, Z., Nadler, B., Eisenberg, R.S.: Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E 64, 036116 (2001)

    Google Scholar 

  465. Scollan, D.F., Holmes, A., Zhang, J., Winslow, R.L.: Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann. Biomed. Eng. 28(8), 934–944 (2000)

    Google Scholar 

  466. Seemann, G., Hoeper, C., Sachse, F.B., Doessel, O., Holden, A.V.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Trans. R. Soc. A 364, 1465–1481 (2006)

    Google Scholar 

  467. Seemann, G., Sachse, F.B., Weiss, D.L., Dossel, O.: Quantitative reconstruction of cardiac electromechanics in human myocardium: regional heterogeneity. J. Cardiovasc. Electrophysiol. 14(10), S219–S228 (2003)

    Google Scholar 

  468. Seger, M., Fischer, G., Modre, R., Messnarz, B., Hanser, F., Tilg, B.: Lead field computation for the electrocardiographic inverse problem – finite element versus boundary elements. Comput. Methods Prog. Biomed. 77, 241–252 (2005)

    Google Scholar 

  469. Sepulveda, N.G., Roth, B.J., Wikswo, J.P., Jr.: Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55, 987–999 (1989)

    Google Scholar 

  470. Sermesant, M., Konukoglu, E., Delingette, H., Coudiere, Y., Khinchapatnam, P., Rhode, K.S., Razzavi, R., Ayache, N.: An anisotropic multi-front fast marching method for real-time simulation in cardiac electrophysiology. In: Sachse, F.B., Seemann, G. (eds.) FIMH’07, Salt Lake City, 7–9 June 2007. LNCS, vol. 4466, pp. 160–169. Springer, Berlin (2007)

    Google Scholar 

  471. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Sciences, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  472. Severi, S., Fantini, M., Charawi, L.A., Di Francesco, D.: An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation. J. Physiol. 590, 4483–4499 (2012)

    Google Scholar 

  473. Shannon, T.R., Wang, F., Puglisi, J., Weber, C., Bers, D.M.: A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J. 87(5), 3351–3357 (2004); Erratum Biophys. J. 102(8), 1996–2001 (2012)

    Google Scholar 

  474. Shaw, R.M., Rudy, Y.: Ionic mechanisms of propagation in cardiac tissue. Role of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81(5), 727–741 (1997)

    Google Scholar 

  475. Shenasa, M., Hindricks, G., Borggrefe, M., Breithardt, G., Josephson, M.E.: Cardiac Mapping, 4th edn. Wiley-Blackwell, Chichester (2012)

    Google Scholar 

  476. Shibata, N., Chen, P.S., Dixon, E.G., Wolf, P.D., Danieley, N.D., Smith, W.M., Ideker, R.E.: Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am. J. Physiol. 255, H891–H901 (1988)

    Google Scholar 

  477. Shou, G., Xia, L., Jiang, M.: Total variation regularization in electrocardiographic mapping. In: Li, K., et al. (eds.) Life System Modeling and Intelligence Computing. LNMI, vol. 6330, pp. 51–59. Springer, Berlin (2010)

    Google Scholar 

  478. Skipa, O., Nalbach, M., Sachse, F., Werner, C., Dossel, O.: Transmembrane potential reconstruction in anisotropic heart model. Int. J. Bioelectromagn. 4(2), 17–18 (2002)

    Google Scholar 

  479. Sicouri, S., Antzelevich, C.: A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res. 68, 1729–1741 (1991)

    Google Scholar 

  480. Sidorov, V.Y., Woods, M.C., Baudenbacher, P., Baudenbacher, F.: Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 289, H2602–H2615 (2005)

    Google Scholar 

  481. Sigg, D.C., Iaizzo, P.A., Xiao, Y.-F., He, B.: Cardiac Electrophysiology Methods and Models. Springer, New York (2010)

    Google Scholar 

  482. Silva, J.R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K.F., Cui, J., Baker, N.A., Sept, D., Rudy, Y.: A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc. Nat. Acad. Sci. 106(27), 11102–11106 (2009)

    Google Scholar 

  483. Simms, H.D., Geselowitz, D.B.: Computation of heart surface potentials using the surface source model. J. Cardiovasc. Electrophysiol. 6, 522–531 (1995)

    Google Scholar 

  484. Singer, A., Gillespie, D., Norbury, J., Eisenberg, R.S.: Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels. Eur. J. Appl. Math. 19, 541–560 (2008)

    MathSciNet  MATH  Google Scholar 

  485. Skouibine, K., Krassowska, W.: Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function. Ann. Biomed. Eng. 28, 772–780 (2000)

    Google Scholar 

  486. Skouibine, K., Trayanova, N., Moore, P.: Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans. Biomed. Eng. 46(7), 769–777 (1999)

    Google Scholar 

  487. Skouibine, K., Trayanova, N., Moore, P.: A numerically efficient model for the simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 166(1), 85–100 (2000)

    MATH  Google Scholar 

  488. Smaill, B.H., Zhao, J., Trew, M.L.: Three-dimensional impulse propagation in myocardium. Arrhythmogenic mechanisms at the tissue level. Circ. Res. 112, 834–848 (2013)

    Google Scholar 

  489. Smith, B.F., Bjørstad, P., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  490. Smith, N.P., Pullan, A.J., Hunter, P.J.: An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62(3), 990–1018 (2002)

    MathSciNet  MATH  Google Scholar 

  491. Smith, N.P., Nickerson, D.P., Crampin, E.J., Hunter, P.J.: Multiscale computational modelling of the heart. Acta Numer. 371–431 (2004)

    Google Scholar 

  492. Soravia, J.P., Souganidis, P.E.: Phase-field theory for Fitzhugh-Nagumo type systems. SIAM J. Math. Anal. 27(5), 1341–1359 (1996)

    MathSciNet  MATH  Google Scholar 

  493. Spach, M.S., Dolber, P.C.: Relating extracellular potentials and their derivatives to anisotropic propagation at microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ. Res. 58, 356–371 (1986)

    Google Scholar 

  494. Spiteri, R.J., Dean, R.C.: On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity. IEEE Trans. Biomed. Eng. 55(5), 1488–1495 (2008)

    Google Scholar 

  495. Stampacchia, G.: Boundary value problems for some degenerate-elliptic operators. Ann. Math. Pura Appl. LXXX(IV), 1–122 (1968)

    Google Scholar 

  496. Steinhaus, B.M.: Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study. Circ. Res. 64(3), 449–462 (1989)

    Google Scholar 

  497. Steinhaus, B.M., Spitzer, K.W., Isomura, S.: Action potential collision in heart tissue. Computer simulations and tissue experiments. IEEE Trans. Biomed. Eng. 32(10), 731–742 (1985)

    Google Scholar 

  498. Streeter, D.: Gross morphology and fiber geometry in the heart. In: Berne, R.M. (ed.) Handbook of Physiology, vol. 1, sect. 2, pp. 61–112. Williams & Wilkins, Philadelphia (1979)

    Google Scholar 

  499. Sundnes, J., Lines, G.T., Mardal, K., Tveito, A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Eng. 5, 397–409 (2002)

    Google Scholar 

  500. Sundnes, J., Lines, G., Lines, G.T., Grottum, P., Tveito, A.: Electrical activity in the human heart. In: Langtangen, H.P., Tveito, A. (eds.) Advanced Topics in Computational Partial Differential Equations. LNCSE, vol. 33, chap. 10, pp. 401–449. Springer, Berlin (2004)

    Google Scholar 

  501. Sundnes, J., Lines, G.T., Tveito, A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194(2), 233–248 (2005)

    MathSciNet  MATH  Google Scholar 

  502. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the Electrical Activity of the Heart. Springer, Berlin (2006)

    Google Scholar 

  503. Sundnes, J., Nielsen, B.F., Mardal, K.A., Lines, G.T., Mardal, K.A., Tveito, A.: On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed. Eng. 34(7), 1088–1097 (2006)

    Google Scholar 

  504. Taccardi, B., Punske, B.B.: Body surface potential mapping. In: Zipes, D., Jalife, J. (eds.) Cardiac Electrophysiology. From cell to Bedside, 4th edn., pp. 803–811. W. B. Saunders, Philadelphia (2004)

    Google Scholar 

  505. Taccardi, B., de Ambroggi, L., Viganotti, C.: Body surface mapping of heart potentials. In: Nelson, C.V., Geselowitz, D.B. (eds.) The Theoretical Basis of Electrocardiology, pp. 436–466. Clarendon, Oxford (1976)

    Google Scholar 

  506. Taccardi, B., Lux, R.L., Ershler, P.R., MacLeod, R.S., Vyhmeister, Y.: Effect of myocardial fiber direction on 3-D shape of excitation wavefronts and associated potential distributions in ventricular walls. Circulation 86, I-752 (1992)

    Google Scholar 

  507. Taccardi, B., Macchi, E., Lux, R.L., Ershler, P.R., Spaggiari, S., Baruffi, S., Vyhmeister, Y.: Effect of myocardial fiber direction on epicardial potentials. Circulation 90, 3076–3090 (1994)

    Google Scholar 

  508. Taccardi, B., Lux, R.L., Ershler, P.R., MacLeod, R.S., Vyhmeister, Y.: Modern views on the spread of excitation in anisotropic heart muscle. Jpn. Heart J. 35, 31–35 (1994)

    Google Scholar 

  509. Taccardi, B., Lux, R.L., Ershler, P.R., MacLeod, R.S., Dustman, T.J., Ingebrigtsen, N.: Anatomical architecture and electrical activity of the heart. Acta Cardiol. 52, 91–105 (1997)

    Google Scholar 

  510. Taccardi, B., Veronese, S., Colli Franzone, P., Guerri, L.: Multiple components in the unipolar electrocardiogram: a simulation study in a three-dimensional model of ventricular myocardium. J. Cardiovasc. Electrophysiol. 9, 1062–1084 (1998)

    Google Scholar 

  511. Taccardi, B., Punske, B., Lux, R., MacLeod, R., Ershler, P., Dustman, T., Vyhmeister, Y.: Useful lesson from body surface mapping on body. J. Cardiovasc. Electrophysiol. 9(7), 773–786 (1998)

    Google Scholar 

  512. Taccardi, B., Punske, B., Helie, F., MacLeod, R., Lux, R., Ershler, P., Dustman, T., Vyhmeister, Y.: Epicardial recovery sequences and excitation recovery intervals during paced beats. Role of myocardial architecture. PACE 22(4), part II: 833 (1999)

    Google Scholar 

  513. Taccardi, B., Punske, B.B., MacLeod, R.S., Ni, Q.: Visualization, analysis and physiological interpretation of three-dimensional cardiac electric fields. In: Proceedings of the 2nd Joint EMBS/BMSE Conference, Houston, Oct 2002. vol. 2, pp. 1366–1367 (2002)

    Google Scholar 

  514. Taccardi, B., Punske, B.B., Colli Franzone, P.: Cardiac potential mapping. In: Proceedings of EMBS/25th IEEE Annual International Conference, Cancun, 17–21 Sept 2003. vol. 4, pp. 3749–3752 (2003)

    Google Scholar 

  515. Taccardi, B., Punske, B.B., Sachse, F., Tricoche, X., Colli Franzone, P., Pavarino, L.F., Zabawa, C.: Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies. J. Electrocardiol. 38, 131–137 (2005)

    Google Scholar 

  516. Taccardi, B., Punske, B., Macchi, E., MacLeod, R.S., Ershler, P.R.: Epicardial and intramural excitation during ventricular pacing: effects of myocardial structure. Am. J. Physiol. Heart. Circ. Physiol. 294, H1753–H1766 (2008)

    Google Scholar 

  517. Taggart, P., Sutton, P., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., Kallis, P.: Transmural repolarization in the left ventricle in humans during normoxia and ischemia. Cardiovasc. Res. 50, 454–462 (2001)

    Google Scholar 

  518. Tarkhanov, N.N.: The Cauchy Problem for Solutions of Elliptic Equations. Akademic Verlag Gmbh, Berlin (1995)

    MATH  Google Scholar 

  519. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), H1088–H1100 (2006)

    Google Scholar 

  520. ten Tusscher, K.H.W.J., Panfilov, A.V.: Modelling of the ventricular conduction system. Prog. Biophys. Mol. Biol. 96(1–3), 152–170 (2008)

    Google Scholar 

  521. ten Tusscher, K., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Phys. Heart. Circ. Physiol. 286(4), H1573–H1589 (2004)

    Google Scholar 

  522. Tomlinson, K.A., Hunter, P.J., Pullan, A.J.: A finite element method for an eikonal equation model of myocardial excitation wavefront propagation. SIAM J. Appl. Math. 63(1), 324–350 (2002)

    MathSciNet  MATH  Google Scholar 

  523. Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, vol. 34. Springer, Berlin (2004)

    Google Scholar 

  524. Transgenstein, J.A., Kim, C.: Operator splitting and adaptive mesh refinement for the Luo–Rudy I model. J. Comput. Phys. 196, 645–679 (2004)

    MathSciNet  Google Scholar 

  525. Trayanova, N.A.: Defibrillation of the heart: insights into mechanisms from modelling studies. Exp. Physiol. 91(2), 323–337 (2006)

    Google Scholar 

  526. Trayanova, N., Eason, J., Aguel, F.: Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Vis. Sci. 4, 259–270 (2002)

    MATH  Google Scholar 

  527. Trayanova, N.A., Constantino, J., Gurev, V.: Electromechanical models of the ventricles. Am. J. Physiol. Heart Circ. Physiol. 301(2), H279–H286 (2011)

    Google Scholar 

  528. Trew, M., Le Grice, I., Smaill, B., Pullan, A.: A finite volume method for modeling discontinuous electrical activation in cardiac tissue. Ann. Biomed. Eng. 33(5), 590–602 (2005)

    Google Scholar 

  529. Trew, M., Smaill, B., Bullivant, D., Hunter, P., Pullan, A.: A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes. Math. Biosci. 198(2), 169–189 (2005)

    MathSciNet  MATH  Google Scholar 

  530. Trew, M.L., Caldwell, B.J., Sands, G.B., Hooks, D.A., Tai, D.C.-S., Austin, T.M., LeGrice, I.J., Pullan, A.J., Smaill, B.H.: Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm. Exp. Physiol. 91(2), 355–370 (2006)

    Google Scholar 

  531. Tung, L.: A bidomain model for describing ischemic myocardial D.C. potentials. Ph.D. dissertation, MIT, Cambridge, MA (1978)

    Google Scholar 

  532. Tyson, J.J., Keener, J.P.: Singular perturbation theory of traveling waves in excitable media. (A review). Physica D 32, 327–361 (1988)

    MathSciNet  MATH  Google Scholar 

  533. Ueda, N., Zipes, D.P., Wu, J.: Functional and transmural modulation of M cell behavior in canine ventricular wall. Am. J. Physiol. (Heart Circ. Physiol) 287, H2569–H2575 (2004)

    Google Scholar 

  534. van Dam, P.M., Oostendorp, T.F., Linnenbank, A.C., van Oosterom, A.: Non-invasive imaging of cardiac activation and recovery. Ann. Biomed. Eng. 37(9), 1739–1756 (2009)

    Google Scholar 

  535. van Oosterom, A.: Cell models–Macroscopic source descriptions. In: Macfarlane, P.W., Lawrie, T.D.V. (eds.) Comprehensive Electrocardiology, pp. 155–179. Pergamon, Oxford (1989)

    Google Scholar 

  536. van Oosterom, A.: Forward and inverse problems in electrocardiography. In: Panfilov, A.V., Holden, A.V. (eds.) Computational Biology of the Heart. Wiley, New York (1997)

    Google Scholar 

  537. van Oosterom, A.: Genesis of the T wave as based on an equivalent surface source model. J. Electrocardiol. 34(Suppl), 217–227 (2001)

    Google Scholar 

  538. van Oosterom, P.: Genesis of the T wave as based on an equivalent surface source model. J. Electrocardiol. 34, 217–227 (2001)

    Google Scholar 

  539. Varghese, A., Sell, G.R.: A conservation principle and its effect on the formulation of Na–Ca exchanger current in cardiac cells. J. Theor. Biol. 189, 33–40 (1997)

    Google Scholar 

  540. Veneroni, M.: Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Methods Appl. Sci. 29, 1631–1661 (2006)

    MathSciNet  MATH  Google Scholar 

  541. Veneroni, M.: Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl. 10(2), 849–868 (2009)

    MathSciNet  MATH  Google Scholar 

  542. Vigmond, E.J.: The electrophysiologic basis of MAP recordings. Cardiovasc. Res. 68, 502–503 (2005)

    Google Scholar 

  543. Vigmond, E.J., Leon, L.J.: Computational efficient model for simulating electrical activity in cardiac tissue with fiber rotation. Ann. Biomed. Eng. 27, 160–170 (1999)

    Google Scholar 

  544. Vigmond, E.J., Aguel, F., Trayanova, N.A.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49(11), 1260–1269 (2002)

    Google Scholar 

  545. Vigmond, E.J., Weber dos Santos, R., Prassl, A.J., Deo, M., Plank, G.: Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008)

    Google Scholar 

  546. Viswanathan, P.C., Shaw, R.M., Rudy, Y.: Effects of I Kr and I Ks heterogeneity on action potential duration and its rate dependence. A simulation study. Circulation 99(18), 2466–2474 (1999)

    Google Scholar 

  547. Wagner, J., Keizer, J.: Effects of rapid buffers on Ca 2+ diffusion and Ca +2 oscillations. Biophys. J. 67, 447–456 (1994)

    Google Scholar 

  548. Wang, Y., Rudy, Y.: Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol. 278, H1019–H1029 (2000)

    Google Scholar 

  549. Wang, D., Kirby, R.M., Johnson, C.R.: Finite-element-based discretization and regularization strategies for 3-D inverse electrocardiography. IEEE Trans. Biomed. Eng. 58(6), 1827–1838 (2011)

    Google Scholar 

  550. Wang, L., Wong, K.C., Zhang, H., Liu, H., Shi, P.: Noninvasive computational imaging of cardiac electrophysiology for 3-D infarct. IEEE Trans. Biomed. Eng. 58(4), 1033–1043 (2011)

    Google Scholar 

  551. Wang, L., Dawoud, F., Yeung, S.-K., Shi, P., Wong, K., Lardo, A.: Transmural imaging of ventricular action potential and post-infarction scars in swine hearts. IEEE Trans. Med. Image 32(4), 731–747 (2013)

    Google Scholar 

  552. Weber dos Santos, R., Plank, G., Bauer, S., Vigmond, E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)

    Google Scholar 

  553. Weissenburger, J., Nesterenko, V., Antzelevitch, C.: Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsade de Pointes develops with halotane but not pentobarbital anesthesia. J. Cardiovasc. Electrophysiol. 11, 290–304 (2000)

    Google Scholar 

  554. White, C.S., Haramati, L.B., Jen-Sho Chen, J., Levsky, J.M.: Cardiac Imaging. Oxford University Press, Oxford (2014)

    Google Scholar 

  555. Whiteley, J.P.: An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53(11), 2139–2147 (2006)

    Google Scholar 

  556. Whiteley, J.P.: Physiology driven adaptivity for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 35(9), 1510–1520 (2007)

    Google Scholar 

  557. Wikswo, J.P., Jr.: Tissue anisotropy, the cardiac bidomain, and the virtual cathode effect. In: Zipes D.P., Jalife J. (eds.) Cardiac Electrophysiology: From Cell to Bedside, 2nd edn., pp. 348–361. W. B. Saunders, Philadelphia (1994)

    Google Scholar 

  558. Wikswo, J.P., Jr., Roth, B.J.: Virtual electrode theory of pacing. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds.) Cardiac Bioelectric Therapy, Chap. 4.3, pp. 283–330. Springer, New York (2009)

    Google Scholar 

  559. Wikswo, J.P., Jr., Lin, S.-F., Abbas, R.A.: Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys. J. 69, 2195–2210 (1995)

    Google Scholar 

  560. Wilson, L.D., Jeyaraj, D.: Controversies in measuring repolarization using extracellular recordings: why should be care. Heart Rhythm 3(9), 1051–1052 (2006)

    Google Scholar 

  561. Winfree, A.T.: Sudden cardiac death: a problem in topology. Sci. Am. 248, 144–161 (1983)

    Google Scholar 

  562. Winfree, A.T.: The Geometry of Biological Time, 2nd edn. Springer, New York (2001)

    MATH  Google Scholar 

  563. Winslow, R.L., Rice, J., Jafri, S., Marban, E., O’Rourke, B.: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II – model studies. Circ. Res. 84(5), 571–586 (1999)

    Google Scholar 

  564. Wit, A.L., Janse, M.J.: The Ventricular Arrhythmias of Ischemia and Infarction: Electrophysiological Mechanisms. Futura Publishing Co., New York (1993)

    Google Scholar 

  565. Wolferth, C.C., Bettet, S., Livezey, M.M., Murphy, F.: Negative displacement of the RS-T segment in the electrocardiogram and its relationships to positive displacement: an experimental study. Am. Heart J. 29, 220–244 (1945)

    Google Scholar 

  566. Wyatt, R.P.: Comparison of estimates of activation and recovery times from bipolar and unipolar electrograms to in vivo transmembrane action potential durations. In: Proceedings of IEEE Engineering in Medicine and Biology Society, 2nd Annual Conference, Washington, DC, pp. 22–25 (1980)

    Google Scholar 

  567. Xia, Y., Kongstad, O., Hertvig, E., Li, Z., Holm, M., Olsson, B., Yuan, S.: Activation recovery time measurements in evaluation of global sequence and dispersion of ventricular repolarization. J. Electrocardiol. 38, 28–35 (2005)

    Google Scholar 

  568. Xie, F., Qu, Z.L., Yang, J., Baher, A., Weiss, J.N., Garfinkel, A.: A simulation study of the effects of cardiac anatomy in ventricular fibrillation. J. Clin. Invest. 113, 686–693 (2004)

    Google Scholar 

  569. Xu, A., Guevara, M.R.: Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium. Chaos 8(1), 157–174 (1998)

    Google Scholar 

  570. Yamashita, Y., Geselowitz, D.B.: Source–field relationships for cardiac generators on the heart surface based on their transfer coefficients. IEEE Trans. Biomed. Eng. 32, 964–970 (1985)

    Google Scholar 

  571. Yan, G.-X., Antzelevitch, C.: Cellular basis for the normal T wave and the electrocardiographic manifestations of the Long-QT syndrome. Circulation 98, 1928–1936 (1998)

    Google Scholar 

  572. Yan, G.X., Shimizu, W., Antzelevitch, C.: Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation 98(18), 1921–1927 (1998)

    Google Scholar 

  573. Yehia, A.R., Jeandupeaux, D., Alonso, F., Guevara, M.R.: Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells. Chaos 9, 916–931 (1999)

    MATH  Google Scholar 

  574. Ying, W.J., Rose, D.J., Henriquez, C.S.: Efficient fully implicit time integration methods for modeling cardiac dynamics. IEEE Trans. Biomed. Eng. 55(12), 2701–2711 (2008)

    Google Scholar 

  575. Young, R.J., Panfilov, A.: Anisotropy of wave propagation in the heart can be modeled by a Riemannian electrophysiological metric. Proc. Natl. Acad. Sci. 107(34), 15063–15068 (2010)

    Google Scholar 

  576. Young, A.A., LeGrice, I.J., Young, M.A., Smaill, B.H.: Extended confocal microscopy of myocardial laminae and collagen network. J. Microscop. 192, 139–150 (1998)

    Google Scholar 

  577. Yu, H.: Solving parabolic problems with different time steps in different regions in space based on domain decomposition methods. Appl. Numer. Math. 30(4), 475–491 (1999)

    MathSciNet  MATH  Google Scholar 

  578. Yu, H.: A local space-time adaptive scheme in solving two-dimensional parabolic problems based on domain decomposition methods. SIAM J. Sci. Comput. 23(1), 304–322 (2001)

    MathSciNet  MATH  Google Scholar 

  579. Yu, H., Chang, F., Cohen, I.S.: Pacemaker i(f) in adult canine cardiac ventricular myocytes. J. Physiol. 485, 469–483 (1995)

    Google Scholar 

  580. Yue, A.M., Betts, T.R., Roberts, P.R., Morgan, J.M.: Global dynamic coupling of activation and repolarization in human ventricle. Circulation 112, 2592–2601 (2005)

    Google Scholar 

  581. Zampini, S.: Balancing Neumann-Neumann methods for the cardiac Bidomain model. Numer. Math. 123, 363–393 (2013)

    MathSciNet  MATH  Google Scholar 

  582. Zampini, S.: Dual-primal methods for the cardiac bidomain model. Math. Model Methods Appl. Sci. 24(4), 667–696 (2014)

    MathSciNet  MATH  Google Scholar 

  583. Zeng, J., Laurita, K.R., Rosenbaum, D.S., Rudy, Y.: Two Components of the delayed rectifier K + current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ. Res. 77, 140–152 (1995)

    Google Scholar 

  584. Zhang, X.: Multilevel Schwarz methods. Numer. Math. 63(4), 521–539 (1992)

    MathSciNet  MATH  Google Scholar 

  585. Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M., Varghese, T., Boyett, M.R.: Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am. J. Physiol. Heart. Circ. Physiol. 279, H397–H421 (2000)

    Google Scholar 

  586. Zipes, D., Jalife, J.: Cardiac Electrophysiology, 2nd edn. W. B. Saunders, Philadelphia (1995)

    Google Scholar 

  587. Zipes, D., Jalife, J.: Cardiac Electrophysiology, 3rd edn. W. B. Saunders, Philadelphia (2000)

    Google Scholar 

  588. Zipes, D., Jalife, J.: Cardiac Electrophysiology: From Cell to Bedside, 4th edn. W. B. Saunders, Philadelphia (2004)

    Google Scholar 

  589. Zipes, D., Jalife, J.: Cardiac Electrophysiology, 5th edn. W. B. Saunders, Philadelphia (2009)

    Google Scholar 

  590. Zipes, D., Jalife, J.: Cardiac Electrophysiology: From Cell to Bedside, 6th edn. W. B. Saunders, Philadelphia (2013)

    Google Scholar 

  591. Zozor, S., Blanc, O., Jacquemet, V., Virag, N., Vesin, J., Pruvot, E., Kappenberger, L., Henriquez, C.: A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans. Biomed. Eng. 50(4), 412–420 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franzone, P.C., Pavarino, L.F., Scacchi, S. (2014). Reduced Macroscopic Models: The Monodomain and Eikonal Models. In: Mathematical Cardiac Electrophysiology. MS&A, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-04801-7_4

Download citation

Publish with us

Policies and ethics