Skip to main content

Effects, Modifiers, and Modes of Action of Allelopathic Compounds Using Phenolic Acids as Model Compounds

  • Chapter
  • First Online:
Plant-Plant Allelopathic Interactions II
  • 856 Accesses

Abstract

This chapter provides an abridged version of the known effects, physicochemical and biotic factors that modify effects, and the modes of action of allelopathic compounds using phenolic acids as the model compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo E, Hsiao TC, Henderson DW (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48:631–626

    CAS  Google Scholar 

  • An M, Pratley JE, Haig T (2001) Phytotoxicity of Vulpia residues III: biological activity of identified allelochemicals from Vulpia mycuros. J Chem Ecol 27:383–394

    CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    CAS  Google Scholar 

  • Balke NE (1985) Effects of allelochemicals on mineral uptake and associated physiological processes. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants, ACS symposium series, vol 268. American Chemical Society, Washington DC, pp 161–178

    Google Scholar 

  • Barber DA, Gunn KB (1974) The effects of mechanical forces on the exudation of organic substances by roots of cereal plants grown under sterile conditions. New Phytol 73:39–45

    CAS  Google Scholar 

  • Barkosky RR, Einhellig FA (1993) Effects of salicylic acid on plant-water relationships. J Chem Ecol 19:237–247

    CAS  Google Scholar 

  • Baziramakenga R, Leroux GD, Simard RR (1995) Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J Chem Ecol 21:1271–1285

    CAS  Google Scholar 

  • Bell DT (1974) The influence of osmotic pressure in tests for allelopathy. Trans Ill State Acad Sci 67:312–317

    Google Scholar 

  • Belz RG (2008) Stimulation versus inhibition—bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. Int Dose-Response Soc 6:80–96

    CAS  Google Scholar 

  • Belz RG, Hurle K, Duke SO (2005) Dose-response–a challenge for allelopathy. Nonlinearity Biol Toxicol Med 3:173–211

    CAS  Google Scholar 

  • Belz RG, Velini ED, Duke SO (2007) Dose/response relationships in allelopathy research. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, pp 3–29

    Google Scholar 

  • Belz RG, Cedergreen N, Sørensen H (2008) Hormesis in mixtures—can it be predicted? Sci Total Environ 404:77–87

    CAS  Google Scholar 

  • Bennie ATP (1996) Growth and mechanical impedance. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Inc, New York, pp 453–470

    Google Scholar 

  • Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645

    CAS  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  Google Scholar 

  • Blum U (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708

    CAS  Google Scholar 

  • Blum U (2004) Fate of phenolic acids in soils—the role of soil and rhizosphere microorganisms. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2011) Plant–plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Blum U, Dalton BR (1985) Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient bioassay. J Chem Ecol 11:279–301

    CAS  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient bioassay studies. J Chem Ecol 31:1907–1932

    CAS  Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    CAS  Google Scholar 

  • Blum U, Rebbeck J (1989) The inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J Chem Ecol 15:917–928

    CAS  Google Scholar 

  • Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession. Bull Torrey Bot Club 96:531–544

    CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soil. Soil Biol Biochem 20:793–800

    CAS  Google Scholar 

  • Blum U, Dalton BR, Rawlings JO (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol 8:1169–1119

    Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985a) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient bioassay. J Chem Ecol 11:619–641

    CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985b) Effects of ferulic and p-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    CAS  Google Scholar 

  • Blum U, Weed SB, Dalton BR (1987) Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant Soil 98:111–130

    CAS  Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, Holappa LD (1992) Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. J Chem Ecol 18:2191–2221

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811

    CAS  Google Scholar 

  • Blum U, Worsham AD, King LD, Gerig TM (1994) Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils. J Chem Ecol 20:341–359

    CAS  Google Scholar 

  • Blum U, Austin MF, Shafer SR (1999a) The fate and effects of phenolic acids in a plant-microbe-soil system. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy I: a science for the future. Cádiz University Press, Puerto Real, pp 159–166

    Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999b) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Crit Rev Plant Sci 18:673–693

    CAS  Google Scholar 

  • Blum U, Staman KL, Flint LJ, Shafer SR (2000) Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol 26:2059–2078

    CAS  Google Scholar 

  • Booker FL, Blum U, Fiscus EL (1992) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J Exp Bot 43:649–655

    CAS  Google Scholar 

  • Boyer JS (1970) Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol 46:233–235

    CAS  Google Scholar 

  • Burchill S, Hayes MHB (1981) Adsorption. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil processes. Wiley, Chichester, pp 221–400

    Google Scholar 

  • Carson EW (1974) The plant root and its environment. University Press of Virginia, Charlottesville

    Google Scholar 

  • Chapin FS III (1991) Integrated responses of plants to stress: a centralized system of physiological responses. BioScience 41:29–36

    Google Scholar 

  • Chen F, Liu C-J, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Crit Rev Plant Sci 28:375–392

    CAS  Google Scholar 

  • Chou C-H, Chung Y-T (1974) The allelopathic potential of Miscanthus floridulus. Bot Bull Academia Sinica 15:14–27

    CAS  Google Scholar 

  • D’Abrosca B, Scognamiglio M, Fiumano V, Esposito A, Choi YH, Verpoorte R, Fiorentino A (2013) Plant bioassays to assess the effects of allelochemicals on the metabolome of the target species Aegilops geniculata by an NMR-based approach. Phytochemistry 93:27–40

    Google Scholar 

  • Dagley S (1971) Catabolism of aromatic compounds by microorganisms. Adv Microb Physiol 6:1–42

    CAS  Google Scholar 

  • Dalton BR (1999) The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 57–74

    Google Scholar 

  • Dalton BR, Blum U, Weed SB (1983) Allelopathic substances in ecosystems: effectiveness of sterile soil components in altering recovery of ferulic acid. J Chem Ecol 9:1185–1201

    CAS  Google Scholar 

  • Dalton BR, Blum U, Weed SB (1989) Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soil. Soil Sci Soc Amer J 53:757–762

    CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  • Demos EK, Woolwine RH, Wilson RH, McMillan C (1975) The effects of ten phenolic compounds on hypocotyl growth and mitochondrial metabolism of mung bean. Am J Bot 62:97–102

    CAS  Google Scholar 

  • dos Santos WD, Ferrarese MLL, Finger A, Teixeira ACN, Ferrarese-Filho O (2004) Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid. J Chem Ecol 30:1203–1212

    Google Scholar 

  • Downs RJ, Thomas JF (1991) Phytotron procedural manual for controlled-environment research at the southeastern plant environment laboratory. North Carolina Agricultural Experiment Station Technical Bulletin, No 244 (Revised)

    Google Scholar 

  • Duke SO, Dayan FE (2006) Modes of action of phytotoxins from plants. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 511–536

    Google Scholar 

  • Duke SO, Williams RD, Markhart AH III (1983) Interaction of moisture stress and three phenolic compounds on lettuce seed germination. Ann Bot 52:923–926

    CAS  Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlook on Pest Manag February 2006:29–33

    Google Scholar 

  • Duke SO, Baerson SR, Pan Z, Kagan IA, Sánchez-Moreiras A, Reigosa MJ, Pedrol N, Schultz M (2008) Genomic approaches to understanding allelochemical effects on plants. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Spring Science Business Media, New York, pp 157–167

    Google Scholar 

  • Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347

    CAS  Google Scholar 

  • Einhellig FA (1986) Mechanisms and modes of action. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 171–188

    Google Scholar 

  • Einhellig FA (1987) Interactions among allelochemicals and other stress factors of the plant environment. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry, ACS symposium series, vol 330. American Chemical Society, Washington DC, pp 343–357

    Google Scholar 

  • Einhellig FA (1989) Interactive effects of allelochemicals and environmental stress. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones, vol 9. Institute of Botany, Academia, Sinica Monograph Series, Taipei, pp 101–118

    Google Scholar 

  • Einhellig FA (1996) Interactions involving allelopathy in cropping systems. Agron J 88:886–893

    CAS  Google Scholar 

  • Einhellig FA (1999) An integrated view of allelochemicals amid multiple stresses. In: Inderjit, Dakshini KMM, Foy CF (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 479–494.

    Google Scholar 

  • Einhellig FA (2004) Mode of allelochemical action of phenolic compounds. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 217–238

    Google Scholar 

  • Einhellig FA, Eckrich PC (1984) Interactions of temperature and ferulic acid stress on grain sorghum and soybeans. J Chem Ecol 10:161–170

    CAS  Google Scholar 

  • Einhellig FA, Rasmussen JA (1978) Synergistic inhibitory effects of vanillic and p-hydroxybenzoic acids on radish and grain sorghum. J Chem Ecol 4:425–436

    CAS  Google Scholar 

  • Einhellig FA, Rice EL, Risser PG, Wender SH (1970) Effects of scopoletin on growth, CO2 exchange rates, and concentrations of scopoletin, scopolin, and chlorogenic acid in tobacco, sunflower and pigweed. Bull Torrey Bot Club 97:22–33

    CAS  Google Scholar 

  • Einhellig FA, Schon MK, Rasmussen JA (1982) Synergistic effects of cinnamic acid compounds on grain sorghum. J Plant Growth Regul 1:251–258

    Google Scholar 

  • Einhellig FA, Muth MS, Schon MK (1985) Effects of allelochemicals on plant-water relationships. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants, ACS symposium series, vol 268. American Chemical Society, Washington DC, pp 179–195

    Google Scholar 

  • Engelaar WMHG, Van Bruggen MW, Van den Hoek WPM, Huyser MAH, Blom WPM (1993) Root porosities and radial oxygen losses of Rumex and Plantago species as influenced by soil pore diameter and soil aeration. New Phytol 125:565–574

    Google Scholar 

  • Evans WC (1963) The microbial degradation of aromatic compounds. J Gen Microbiol 32:177–185

    CAS  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth. Blackwell Scientific, Oxford

    Google Scholar 

  • Felle H (1987) Proton transport and pH control in Sinapis alba root hairs: A study carried out in double barreled pH micro-electrodes. J Exp Bot 38:340–354

    CAS  Google Scholar 

  • Felle H (1988) Short-term pH regulation in plants. Physiol Plant 74:583–591

    CAS  Google Scholar 

  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol 3:577–591

    CAS  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96:519–532

    CAS  Google Scholar 

  • Fujita K-I, Kubo I (2003) Synergism of polygodial and trans-cinnamic acid on inhibition of root elongation in lettuce seedling growth bioassays. J Chem Ecol 29:2253–2262

    CAS  Google Scholar 

  • Gauthier M (1997) Hydrophilic and hydrophobic interactions. In: Lagowski JJ (ed) Macmillan encyclopedia of chemistry, vol 2. Simon and Shuster Macmillan, New York, pp 763–765

    Google Scholar 

  • Gawronska H, Golisz A (2006) Allelopathy and biotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 211–227

    Google Scholar 

  • Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials. J Chem Ecol 17:29–40

    CAS  Google Scholar 

  • Gerig TM, Blum U (1993) Modification of an inhibition curve to account for effects of a second compound. J Chem Ecol 19:2783–2790

    CAS  Google Scholar 

  • Gerig TM, Blum U, Meier K (1989) Statistical analysis of the joint inhibitory action of similar compounds. J Chem Ecol 15:2403–2412

    CAS  Google Scholar 

  • Ghareib HRA, Abdelhamed MS, Ibrahim OH (2010) Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biol Manag 10:64–72

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Google Scholar 

  • Gibson DT (1968) Microbial degradation of aromatic compounds. Science 161:1093–1097

    CAS  Google Scholar 

  • Glass ADM (1973) Influence of phenolic acids on ion uptake I: inhibition of phosphate uptake. Plant Physiol 51:1037–1041

    CAS  Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids on ion uptake III: inhibition of potassium uptake. J Exp Bot 25:1104–1113

    CAS  Google Scholar 

  • Glass ADM (1975) Inhibition of phosphate uptake in barley roots by hydroxy-benzoic acids. Phytochemistry 14:2117–2130

    Google Scholar 

  • Glass ADM (1989) Plant nutrition. An introduction to current concepts. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Glass ADM, Dunlop J (1974) Influence of phenolic acids on ion uptake IV: depolarization of membrane potentials. Plant Physiol 54:855–858

    CAS  Google Scholar 

  • Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants: multi site action of allelochemicals. J Acta Physiol Plant 27:395–407

    CAS  Google Scholar 

  • Gordon DC, Hettiaratchi DRP, Bengough AG, Young IM (1993) Non-destructive analysis of root growth in porous media. Plant Cell Environ 15:123–128

    Google Scholar 

  • Gout E, Boisson A-M, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells: carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    CAS  Google Scholar 

  • Hambidge G (1941) Hunger signs in crops. The American Society of Agronomy and The National Fertilizer Association, Washington DC

    Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry. Academic Press, London

    Google Scholar 

  • Harder W, Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B Biol Sci 297:459–480

    CAS  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1439–1353

    Google Scholar 

  • Hartley RD, Whitehead DC (1985) Phenolic acids in soils and their influence on plant growth and soil microbial processes. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Martinus Nijhoff Dr W Junk Publishers, Dordrech, pp 109–149

    Google Scholar 

  • Haugland E, Brandsaeter LO (1996) Experiments on bioassay sensitivity in the study of allelopathy. J Chem Ecol 22:1845–1859

    CAS  Google Scholar 

  • Hewitt EJ, Smith TA (1974) Plant mineral nutrition. Wiley, New York

    Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water-bioassay method of growing plants without soil. Calif Agric Exp Sta Circ 347, pp 1–19

    Google Scholar 

  • Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and exogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–886

    CAS  Google Scholar 

  • Hu FD, Jones RJ (1997) Effects of plant extracts of Bothriochloa persusa and Urochloa mosambicensis on seed germination and seedling growth of Stylosanthes hamata cv. Verano and Stylosanthes scabra cv. Seca. Aust J Agric Res 48:1257–1264

    Google Scholar 

  • Hunt R (1982) Plant growth curves. The functional approach to plant growth analysis. University Park Press, Baltimore

    Google Scholar 

  • Inderjit, Streibig JC, Olofsdotter M (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiologia Plantarum 114:422–428

    Google Scholar 

  • Inderjit, von Dahl CC, Baldwin IT (2009) Use of silenced plants in allelopathy bioassays: a novel approach. Planta 229:569–575

    Google Scholar 

  • Ishii-Iwamoto EL, Abrahim D, Sert MA, Bonato CM, Kelmer-Bracht AM, Bracht A (2006) Mitochondria as site of allelochemical action. In: Reigosa MJ, Pedrol N, Gonzalez L (eds) Allelopathic: a physiological process with ecological implications. Springer, Dordrecht, pp 267–284

    Google Scholar 

  • Jia C, Kudsk P, Mathiassen SK (2006) Joint action of benzoxazinone derivatives and phenolic acids. J Agric Food Chem 54:1049–1957

    CAS  Google Scholar 

  • Jones JB Jr (1998) Plant nutrition manual. CRC Press, Boca Raton

    Google Scholar 

  • Klein K, Blum U (1990a) Inhibition of cucumber leaf expansion by ferulic acid in split-root experiments. J Chem Ecol 16:455–463

    CAS  Google Scholar 

  • Klein K, Blum U (1990b) Effects of soil nitrogen level on ferulic acid inhibition of cucumber leaf expansion. J Chem Ecol 16:1371–1383

    CAS  Google Scholar 

  • Kramer PJ (1983) Water relations of plants. Academic Press Inc, Orlando

    Google Scholar 

  • Kurkdjian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Ann Rev Plant Physiol Plant Mol Biol 40:271–303

    CAS  Google Scholar 

  • Lang ARG (1967) Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40 °C. Aust J Chem 20:2017–2023

    CAS  Google Scholar 

  • Lawlor DW (1970) Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytol 69:501–513

    CAS  Google Scholar 

  • Leão PN, Vasconcelos LMTSD, Vasconcelos VM (2009) Allelopathy in freshwater cynanobacteria. Crit Rev Microbiol 35:271–282

    Google Scholar 

  • Leather GR (1983) Sunflowers (Helianthus annuus) are allelopathic weeds. Weed Sci 31:37–42

    Google Scholar 

  • Lehman ME, Blum U (1999a) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J Chem Ecol 25:1517–1529

    CAS  Google Scholar 

  • Lehman ME, Blum U (1999b) Evaluation of ferulic acid uptake as measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585–2600

    CAS  Google Scholar 

  • Lehman ME, Blum U, Gerig TM (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J Chem Ecol 20:1773–1782

    CAS  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Li H-H, Inoue M, Nishimaru H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787

    CAS  Google Scholar 

  • Li Z-H, Wang Q, Ruan X, Jiang D-A (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    CAS  Google Scholar 

  • Li Z-F, Zang Z-G, Xie D-F, Dai L-Q, Zhu L-F, Li J, Liu Z-Q, Wu L-K, Huang M-J, Zhang Z-Y, Lin W-X (2011) Positive allelopathic stimulation and underlying molecular mechanisms of achyranthe under continuous monoculture. Act Physiol Plant 33:2339–2347

    CAS  Google Scholar 

  • Lüttge U, Ball E (1979) Electrochemical investigation of active malic acid transport at the tonoplast into vocuoles of the CAM plant Kalanchoë daigremontiana. J Membr Biol 47:401–422

    Google Scholar 

  • Lüttge U, Smith AC, Marigo G, Osmond CB (1981) Energetics of malate accumulation in the vacuoles of Kalanchoë tunbiflora cells. FEBS Lett 126(8):1–84

    Google Scholar 

  • Lyu S-W, Blum U (1990) Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J Chem Ecol 16:2429–2439

    CAS  Google Scholar 

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    CAS  Google Scholar 

  • Macías FA, Molinillo JMG, Valera RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348

    Google Scholar 

  • Martin JP, Haider K (1976) Decomposition of specifically carbon-14-labeled ferulic acid: free and linked into model humic acid-type polymers. Soil Sci Soc Am J 40:377–380

    CAS  Google Scholar 

  • McClendon JH (1981) The osmotic pressure of concentrated solutions of polyethylene glycol 6000, and its variation with temperature. J Exp Bot 32:861–866

    CAS  Google Scholar 

  • McClure PR, Gross HD, Jackson WA (1978) Phosphate absorption by soybean varieties: influence of ferulic acid. Can J Bot 56:764–767

    CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, 2nd ed. Blackwell Science, Oxford

    Google Scholar 

  • McPherson JK, Chou C-H, Muller CH (1971) Allelopathic constituents of the chaparral shrub Adenostoma fasiculatum. Phytochemistry 10:2925–2933

    CAS  Google Scholar 

  • Moreland DE, Huber SC (1979) Inhibition of photosynthesis and respiration by substituted 2,6-dinotroanaline herbicides III. Effects of electron transport and membrane properties of isolated mung bean mitochondria. Pestic Biochem Physiol 11:247–257

    CAS  Google Scholar 

  • Moreland DE, Novitzky WP (1987) Effects of phenolic acids, coumarins, and flavonoids on isolated chloroplasts and mitochondria. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry, ACS symposium series, vol 330. American Chemical Society, Washington DC, pp 247–261

    Google Scholar 

  • Morse PM (1978) Some comments on the assessment of joint action in herbicide mixtures. Weed Sci 26:58–71

    CAS  Google Scholar 

  • Mozafar A (1991) Contact with ballotini (glass spheres) stimulates exudation of iron reducing and iron chelating substances from barley roots. Plant Soil 130:105–108

    CAS  Google Scholar 

  • Ohno T, Horesh MY, Merrit KA, Wagai R (2002) Calcium and pH effects on salicylic acid phytotoxicity. Allelopathy J 9:19–25

    Google Scholar 

  • Pandey DK (1994) Inhibition of Salvinia (Salvinia molesta Mitchell) by parthenium (Parthenium hysterophorus L.). II. Relative effect of flower, leaf, stem, and root residue on salvinia and paddy. J Chem Ecol 20:3123–3131

    CAS  Google Scholar 

  • Papanastasiou AC (1982) Kinetics of biodegration of 2-4 dichlorophenoxyacetate in the presence of glucose. Biotechnol Bioeng 24:2001–2011

    CAS  Google Scholar 

  • Patterson DT (1981) Effects of allelopathic chemicals on growth and physiological responses to soybean (Glycine max). Weed Sci 29:53–58

    CAS  Google Scholar 

  • Pedrol N, González L, Reigosa MJ (2006) Allelopathy and abiotic stress. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 171–209

    Google Scholar 

  • Plaut Z, Federman E (1985) A simple procedure to overcome polyethylene glycol toxicity on whole plants. Plant Physiol 79:559–561

    CAS  Google Scholar 

  • Politycka B (1998) Phenolics and the activities of phenylalanine ammonia-lyase, phenol-ß-glucosyltransferase and ß-glucosidase in cucumber roots as affected by phenolic allelochemicals. Acta Physiol Plant 20:405–410

    CAS  Google Scholar 

  • Politycka B, Mielcarz B (2007) Involvement of ethylene in growth of cucumber roots by ferulic and p-coumaric acids. Allelopathy J 19:451–460

    Google Scholar 

  • Politycka B, Kozlowska M, Mielcarz B (2004) Cell wall peroxidases in cucumber roots induced by phenolic allelochemicals. Allelopathy J 13:29–35

    Google Scholar 

  • Prasad MNV, Devi SR (2002) Physiological basis for allelochemical action of ferulic acid. In: Reigosa MJ, Pedrol N (eds) Allelopathy. From molecules to ecosystems. Science Publishers Inc, Enfield, pp 25–43

    Google Scholar 

  • Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J Chem Ecol 21:833–847

    CAS  Google Scholar 

  • Radford PJ (1967) Growth analysis formulae-their use and abuse. Crop Sci 7:171–175

    Google Scholar 

  • Rasmussen JA, Einhellig FA (1977) Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J Chem Ecol 3:197–205

    CAS  Google Scholar 

  • Reigosa MJ, Souto XC, González L (1999) Effects of phenolic compounds on germination of six weed species. Plant Growth Regul 28:83–88

    CAS  Google Scholar 

  • Rending VV, Taylor HM (1989) Principles of soil-plant interrelationships. McGraw-Hill Publishing Company, New York

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, London

    Google Scholar 

  • Rice EL (1986) Allelopathic growth stimulation. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 23–42

    Google Scholar 

  • Sakano K, Yazaki Y, Mimura T (1992) Cytoplasmic acidification induced by inorganic phosphate uptake in suspension cultured Catharanthus roseus cells. Plant Physiol 99:672–680

    CAS  Google Scholar 

  • Sampietro DA, Catalan CAN, Vattuone MA (2009) Isolation, identification and characterization of allelochemical/natural products. Science Publishers, Enfield

    Google Scholar 

  • Sawhney BL, Brown K (1989) Reactions and movement of organic chemicals in soils. SSSA special publication, No 22. Soil Science Society of America Inc, Madison

    Google Scholar 

  • Shann JR, Blum U (1987a) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    CAS  Google Scholar 

  • Shann JR, Blum U (1987b) The utilization of exogenously supplied ferulic acid in lignin biosynthesis. Phytochemistry 26:2977–2982

    CAS  Google Scholar 

  • Steuter AA, Mazafar A, Goodin JR (1981) Water potential of aqueous polyethylene glycol. Plant Physiol 67:64–67

    CAS  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Wiley, New York

    Google Scholar 

  • Stowe LG (1979) Allelopathy and its influence on the distribution of plants in an Illinois old-field. J Ecol 67:1065–1085

    CAS  Google Scholar 

  • Stowe LG, Osborn A (1980) The influence of nitrogen and phosphorus levels on the phytotoxicity of phenolic compounds. Can J Bot 58:1149–1153

    CAS  Google Scholar 

  • Taylor HM (1974) Root behavior as affected by soil structure and strength. In: Carson EW (ed) The plant root and its environment. University Press of Virginia, Charlottesville, pp 271–291

    Google Scholar 

  • Tharayil N, Bhowmik PC, Xing B (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J Agric Food Chem 56:3706–3713

    CAS  Google Scholar 

  • van Beusichem ML (1990) Plant nutrition—physiology and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Vaughan D, Sparling GP, Ord BG (1983) Amelioration of the phytotoxicity of phenolic acids by some soil microbes. Soil Biol Biochem 15:613–614

    CAS  Google Scholar 

  • Vaughan D, Jones D, Ord BG (1993) Amelioration by Volutella ciliate of vanillic acid towards the growth of Pisum sativum L. Soil Biol Biochem 25:11–17

    CAS  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (1996) Plant roots: the hidden half. Marcel Dekker Inc, New York

    Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    CAS  Google Scholar 

  • Waller GR, Feng M-C, Fujii Y (1999) Biochemical analysis of allelopathic compounds: plants, microorganisms, and soil secondary metabolites. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 75–98

    Google Scholar 

  • Wardle DA, Nicholson KS, Ahmed M (1992) Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. Plant Soil 140:315–319

    Google Scholar 

  • Wardle DA, Nicholson KS, Rahman A (1993) Influence of age on allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. Weed Res 33:69–78

    Google Scholar 

  • Waters ER, Blum U (1987) Effects of single and multiple exposures of ferulic acid on the vegetative and reproductive growth of Phaseolus vulgaris BBL-290. Am J Bot 74:1635–1645

    CAS  Google Scholar 

  • Weidenhamer JD, Macías FA, Fisher NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    CAS  Google Scholar 

  • Williamson GB, Weidenhamer JD (1990) Bacterial degradation of juglone. Evidence against allelopathy? J Chem Ecol 16:1739–1742

    CAS  Google Scholar 

  • Xu M, Galhano R, Wiemann P, Bueno E, Tiernan M, Wu W, Chung I-M, Gershenzon J, Tudzynski B, Sesma A, Peters RJ (2012) Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol 193:570–575

    CAS  Google Scholar 

  • Yu JQ, Matsui Y (1997) Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23:817–827

    CAS  Google Scholar 

  • Zanardo DIL, Lima RB, Ferrarese MdeLL, Bubna GA, Ferrarese-Filho O (2009) Soybean root growth inhibition and lignification induced by p-coumaric acid. Environ Exp Bot 66:25–30

    CAS  Google Scholar 

  • Zhang Y, Gu M, Xia X, Shi K, Zhou Y, Yu Z (2009) Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J Chem Ecol 35:679–688

    CAS  Google Scholar 

  • Zhou YH, Yu JQ (2006) Allelochemicals and photosynthesis. In: Reigosa MJ, Pedrol N, Gonzalez L (eds) Allelopathy: A\a physiological process with ecological implications. Springer, Dordrecht, pp 127–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blum, U. (2014). Effects, Modifiers, and Modes of Action of Allelopathic Compounds Using Phenolic Acids as Model Compounds. In: Plant-Plant Allelopathic Interactions II. Springer, Cham. https://doi.org/10.1007/978-3-319-04732-4_5

Download citation

Publish with us

Policies and ethics