Skip to main content

Hypothetical Standard Screening Bioassays

  • Chapter
  • First Online:
  • 788 Accesses

Abstract

This chapter describes in some detail a number of standard (common or classical) laboratory screening bioassays for identifying putative allelopathic plants and sensitive species. These include bioassays for the following: identified putative allelopathic compounds, leachates, “root exudates plus”, litter and residues, and soils. The procedures of each bioassay have been adjusted, where possible, to be consistent with the tenets of Chap. 3. Comments regarding potential benefits and limitations of these bioassays are also provided throughout the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Al-Naib FA, Rice EL (1971) Allelopathic effects of Platanus occidentalis. Bull Torrey Bot Club 98:75–82

    Google Scholar 

  • Anaya AL (1999) Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit Rev Plant Sci 18:697–739

    CAS  Google Scholar 

  • Anderson RA, Todd JR (1968) Estimation of total tobacco plant phenols by bonding to polyvinylpyrrolidone. Tobacco Sci 12:107–111

    Google Scholar 

  • Bansal RC, Goyal M (2005) Activated carbon adsorption. Taylor & Francis, Boca Raton

    Google Scholar 

  • Barnes JP, Putman AR (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J Chem Ecol 9:1045–1057

    CAS  Google Scholar 

  • Barnes JP, Putnam AR, Burke A (1986) Allelopathic activity of rye (Secale cereale L.). In: Putnam AR, Tang C-S (eds) Science of allelopathy. Wiley, New York, pp 271–286

    Google Scholar 

  • Bear FE (1964) Chemistry of the soil, 2nd edn. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Bell DT, Koeppe DE (1972) Noncompetitive effects of giant foxtail on the growth of corn. Agron J 64:321–325

    Google Scholar 

  • Belz RG, Hurle K (2004) A novel laboratory screening bioassay for crop seedling allelopathy. J Chem Ecol 30:175–198

    CAS  Google Scholar 

  • Bertin C, Harmon R, Akaogi M, Weidenhamer JD, Weston LA (2009) Assessment of the phytotoxic potential of m-tyrosine in laboratory soil bioassays. J Chem Ecol 35:1288–1294

    CAS  Google Scholar 

  • Black CA (1965a) Methods of soil analysis, Part 1. Physical and mineralogical properties, including statistics of measurement and sampling, vol 9. Agronomy Series, American Society of Agronomy Inc, Madison

    Google Scholar 

  • Black CA (1965b) Methods of soil analysis, part 2. Chemical and microbiological properties, vol 9. Agronomy series. American Society of Agronomy Inc, Madison

    Google Scholar 

  • Blum U (1999) Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 17–23

    Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    CAS  Google Scholar 

  • Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession. Bull Torrey Bot Club 96:531–544

    CAS  Google Scholar 

  • Blum U, Dalton BR, Rawlings JO (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol 10:1169–1191

    CAS  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, Holappa LD, King LD (1992) Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. J Chem Ecol 18:2191–2221

    CAS  Google Scholar 

  • Blum U, King LD, Gerig TM, Lehman ME, Worsham AD (1997) Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. Am J Altern Agric 12:146–161

    Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673–693

    CAS  Google Scholar 

  • Blum U, King LD, Brownie C (2002) Effects of wheat residues on dicotyledonous weed emergence in a simulated no-till system. Allelopath J 9:159–176

    Google Scholar 

  • Box JD (1983) Investigation of the Folin–Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    CAS  Google Scholar 

  • Bradow JM (1991) Relationships between chemical structure and inhibitory activity of C6 through C9 volatiles emitted by plant residues. J Chem Ecol 17:2193–2212

    CAS  Google Scholar 

  • Brown RW (1970) Measurement of water potential with thermocouple psychrometers: construction and applications. USDA Forest Service research paper INT-80 1970. Intermountain Forest and Ranger Experiment Station, Forest Service US Department of Agriculture, Ogden

    Google Scholar 

  • Brust GE (1994) Seed-predators reduced broadleaf weed growth and competitive ability. Agric Ecosyst Environ 48:27–34

    Google Scholar 

  • Brust GE, House GJ (1988) Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am J Altern Agric 3:19–25

    Google Scholar 

  • Buttery RG, Xu C-J, Ling LC (1985) Volatile components of wheat leaves (and stems): possible insect attractants. J Agric Food Chem 33:115–117

    Google Scholar 

  • Buurman P, van Lagen B, Velthorst EJ (1996) Manual for soil and water analysis. Backhuys Publishers, Leiden

    Google Scholar 

  • Carlsen SCK, Pederson HA, Spliid NH, Fomsgaard IS (2012) Fate in soil of flavonoids released from white clover (Trifolium repens L). Appl Environ Soil Sci 2012 (Article ID 43413, 10 p)

    Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton

    Google Scholar 

  • Cheremisinoff PN, Ellerbusch F (1978) Carbon adsorption handbook. Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Chou CH, Muller CH (1972) Allelopathic mechanisms of Arctostaphylos glandulosa var. zacaensis. Amer Midl Nat 88:324–247

    CAS  Google Scholar 

  • Cogbill VC, Likens GE (1974) Acid precipitation in the Northeastern United States. Water Resour Res 10:1133–1137

    CAS  Google Scholar 

  • D’Abrosca B, Scognamiglio M, Fiumano V, Esposito A, Choi YH, Verpoorte R, Fiorentino A (2013) Plant bioassays to assess the effects of allelochemicals on the metabolome of the target species Aegilops geniculata by an NMR-based approach. Phytochemistry 93:27–40

    Google Scholar 

  • Dalton BR, Blum U, Weed SB (1983) Allelopathic substances in ecosystems: effectiveness of sterile soil components in altering recovery of ferulic acid. J Chem Ecol 9:1185–1201

    CAS  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhanced accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    CAS  Google Scholar 

  • del Moral R, Muller CH (1969) Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bull Torrey Bot Club 96:467–475

    CAS  Google Scholar 

  • DuBay DT, Heagle AS (1987) The effects of simulated acid rain with and without ambient rain on the growth and yield of field grown soybeans. Environ Exper Bot 27:401–395

    Google Scholar 

  • Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347

    CAS  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    CAS  Google Scholar 

  • Einhellig FA, Leather GR, Hobbs LL (1985) Use of Lemna minor L. as a bioassay in allelopathy. J Chem Ecol 11:65–72

    CAS  Google Scholar 

  • Fernandes JC, Gamero CA, Rodrigues JGL, Miras-Avalos JM (2011) Determination of the quality index of a Paleudult under sunflower bioassay and different management systems. Soil Till Res 112:167–174

    Google Scholar 

  • Fester CR, Peterson GA (1979) Effects of no-tillage fallow as compared to conventional tillage in a wheat-fallow system, Res Bull 289. Agric Exp Station, University of Nebraska, Lincoln

    Google Scholar 

  • Gallet C, Pellissier F (1997) Phenolic compounds in natural solutions of coniferous forest. J Chem Ecol 23:2401–2412

    CAS  Google Scholar 

  • Guenzi WD, McCalla TM (1966) Phenolic acids in oats, wheat, sorghum, and corn residues and their phytotoxicity. Agron J 58:303–304

    CAS  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    CAS  Google Scholar 

  • Hall AB, Blum U, Fites RC (1982) Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. Am J Bot 69:776–783

    Google Scholar 

  • Hall AB, Blum U, Fites RC (1983) Stress modification of allelopathy of Helianthus annuus L. debris on seedling biomass production of Amaranthus retroflexus L. J Chem Ecol 9:1213–1222

    CAS  Google Scholar 

  • Harborne JB (1984) Phytochemical methods. A guide to modern techniques of plant analysis, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Harley JL, Harley EL (1987) A checklist of mycorrhiza in the British flora. New Phytol (Suppl.) 105:1–102

    Google Scholar 

  • Hasbullah, Marschner P, McNeill A (2011) Legume residues arbuscular mycorrhizal colonization and P uptake by wheat. Biol Fertil Soil 47:701–707

    Google Scholar 

  • Hassler JW (1963) Active carbon. Chemical Publishing Company, Inc., Brooklyn

    Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water-bioassay method of growing plants without soil. Calif Agric Exp Station Circular 347, pp 1–19

    Google Scholar 

  • Hoagland RE, Williams RD (2004) Bioassays—useful tools for the study of allelopathy. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemiclas. CRC Press, Boca Raton, pp 315–351

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  • Huang CP (1978) Chemical interactions between inorganics and activated carbon. In: Cheremisinoff PN, Ellerbusch F (eds) Carbon adsorption handbook. Ann Arbor Science, Ann Arbor, pp 281–329

    Google Scholar 

  • Ikawa M, Dollard CA, Schaoer TD (1988) Reaction of Folin–Ciocalteau reagent with purines, pyrimidines, and pteridines and its relationships with structure. J Agric Food Chem 36:309–311

    CAS  Google Scholar 

  • Interjit, Dakshini KMM (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44

    Google Scholar 

  • Kalra YP (1998) Handbook of reference methods for plant analysis. CRC Press, Boca Raton

    Google Scholar 

  • Kimber RWL (1973) Phytotoxicity from plant residues III: the relative effects of toxins and nitrogen immobilization on the germination and growth of wheat. Plant Soil 38:543–555

    CAS  Google Scholar 

  • Klute A (1986) Methods of soil analysis, part 1. Physical and mineralogical methods, 2nd edn. No. 9 Agronomy series. American Society of Agronomy Inc, Madison

    Google Scholar 

  • Kochhar M, Blum U, Reinert RA (1980) Effects of O3 and (or) fescue on ladino clover: interactions. Can J Bot 58:241–249

    CAS  Google Scholar 

  • Kormanik PP, McGraw A-C (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, pp 37–45

    Google Scholar 

  • Lang ARG (1967) Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40 °C. Aust J Chem 20:2017–2923

    CAS  Google Scholar 

  • Lau JA, Puliafico KP, Kopshever JA, Steltzer H, Jarvis EP, Schwarzländer M, Strauss SY, Hufbauer RA (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol 178:412–423

    CAS  Google Scholar 

  • Lawlor DW (1970) Absorption of polyethylene glycols by plants and their effects on growth. New Phytol 69:501–513

    CAS  Google Scholar 

  • Leather GR (1983a) Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed Sci 31:37–42

    Google Scholar 

  • Leather GR (1983b) Weed control using allelopathic crop plants. J Chem Ecol 9:983–989

    CAS  Google Scholar 

  • Leather GR, Einhellig FA (1988) Bioassay of naturally occurring allelochemicals for phytotoxicity. J Chem Ecol 14:1821–1828

    CAS  Google Scholar 

  • Leben C (1961) Microorganisms of cucumber seedlings. Phytopathology 51:533–557

    Google Scholar 

  • Lehman ME, Blum U (1997) Cover crop debris effects on weed emergence as modified by environmental factors. Allelopath J 4:69–88

    Google Scholar 

  • Liebeke M, Brözel VS, Hecker M (2009) Chemical characterization of soil extracts as growth media for the ecophysiological study of bacteria. Appl Microbiol Biotechnol 83:161–173

    CAS  Google Scholar 

  • Liebl RA, Worsham AD (1983) Inhibition of morning-glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J Chem Ecol 9:1027–1043

    CAS  Google Scholar 

  • Long WG, Sweet DV, Tukey HB (1956) Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science 123:1039–1040

    CAS  Google Scholar 

  • Lorenzi HJ, Jeffery LS (1987) Weeds of the United States and their control. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Lynch JM (1977) Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J Appl Bact 42:81–87

    CAS  Google Scholar 

  • Macías FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JMG (2005) Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-ß-D-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J Agric Food Chem 53:554–561

    Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distribution of two Mojave desert shrubs. Ecology 73:2145–2151

    Google Scholar 

  • Margesin R, Schinner F (2005) Manual for soil analysis—monitoring and assessing soil bioremediation. Springer, Berlin

    Google Scholar 

  • Martin P, Rademacher B (1960) Studies on the mutual influences of weeds and crops. In Harper JL (ed) The biology of weeds: a symposium of the British Ecological Society, Oxford. Blackwell, Oxford, pp 143–251

    Google Scholar 

  • Mathiassen SK, Kudsk P, Mogensen BB (2006) Herbicidal effects of soil-incorporated wheat. J Agric Food Chem 54:1058–1063

    CAS  Google Scholar 

  • Mattson JS, Mark HB (1971) Activated carbon. Surface chemistry and adsorption from solution. Marcel Dekker Inc, New York

    Google Scholar 

  • McAllister RA (1969) Observations on Folin–Ciocalteau reaction. J Med Lab Technol 26:1–10

    CAS  Google Scholar 

  • McClendon JH (1981) The osmotic pressure of concentrated solutions of polyethylene glycol 6000 and its variation with temperature. J Exp Bot 32:861–866

    CAS  Google Scholar 

  • Menge JA, Timmer LW (1982) Procedures for inoculation of plants with vesicular-arbuscular mycorrhizae in the laboratory, greenhouse, and field. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, pp 59–68

    Google Scholar 

  • Molisch H (2001) The influence of one plant on another: allelopathy. In: Narwal SS (ed) LaFleur LJ and Mallik MAB (translators; from German). Scientific Publishers (India), Jodhpur

    Google Scholar 

  • Moroke TS, Schwartz RC, Brown KW, Juo ASR (2011) Water use efficiency of dryland cowpea, sorghum and sunflower under reduced tillage. Soil Till Res 112:76–84

    Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel DW, Rufty TW (2006) Nitrogen transfer between plants: a 15N natural abundance study with crop and weed species. Plant Soil 282:7–20

    CAS  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–697

    CAS  Google Scholar 

  • Muscolo A, Sidari M, Texeira daSJA (2013) Biological effects of water-soluble soil phenol and soil humic extracts on plant systems. Acta Physiol Plant 35:309–320

    CAS  Google Scholar 

  • Nakano H, Morita S, Shigemori H, Hasegawa K (2006) Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Reg 48:215–219

    CAS  Google Scholar 

  • Niemeyer HM, Pesel ES, Capaja SV, Bravo HR, Franke S, Francke W (1989) Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 28:447–449

    CAS  Google Scholar 

  • Nilsen ET, Walker JF, Miller OK, Semones SW, Lei TT, Clinton BD (1999) Inhibition of seedling survival under Rhododendron maximum (Ericaceae): could allelopathy be a cause? Am J Bot 86:1597–1605

    CAS  Google Scholar 

  • Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7

    Google Scholar 

  • Noguchi HK, Ino T, Sata N, Yamamura S (2002) Isolation and identification of a potent allelopathic substance in rice exudates. Physiol Plantarum 115:401–405

    Google Scholar 

  • Nollet LML (2000) Handbook of water analysis. Marcel Dekker Inc, New York

    Google Scholar 

  • Oosting HJ (1942) An ecological analysis of the plant communities of Piedmont North Carolina. Amer Midl Nat 28:1–126

    Google Scholar 

  • Overland L (1966) The role of allelopathic substances in the “smother crop” barley. Amer J Bot 53:423–432

    CAS  Google Scholar 

  • Page AL (1982) Methods of soil analysis, part 2. Chemical and microbiological properties, 2nd edn. No. 9 Agronomy series. American Society of Agronomy Inc, Madison

    Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with the decomposition in soil of plant residues. Soil Sci 111:13–18

    CAS  Google Scholar 

  • Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (1989) Plant physiological ecology. Field methods and instrumentation. Chapman and Hall, London

    Google Scholar 

  • Percy K (1986) The effects of simulated acid rain on germinative capacity, growth and morphology of forest tree seedlings. New Phytol 104:473–484

    CAS  Google Scholar 

  • Pérez FJ, Ormeňo-Nuňez J (1991) Root exudates of wild oats: allelopathic effect on spring wheat. Phytochem 30:2199–2202

    Google Scholar 

  • Plaut Z, Federman E (1985) A simple procedure to overcome polyethylene glycol toxicity on whole plants. Plant Physiol 79:559–561

    CAS  Google Scholar 

  • Prince EK, Pohnert G (2010) Searing for signals in the noise: metabolomics in chemical ecology. Anal Bioanal Chem 396:193–197

    CAS  Google Scholar 

  • Putnam AR (1994) Phytotoxicity of plant residues. In: Unger PW (ed) Managing agricultural residues. Lewis Publishers, Boca Raton, pp 285–314

    Google Scholar 

  • Putnam AR, DeFrank J (1983) Use of phytotoxic plant residues for selective weed control. Crop Prot 2:173–181

    Google Scholar 

  • Putnam AR, DeFrank J, Barnes JP (1983) Exploitation of allelopathy for weed control in annual and perennial cropping systems. J Chem Ecol 9:1001–1010

    CAS  Google Scholar 

  • Reader RJ (1991) Control of seedling emergence by ground cover: a potential mechanism involving seed predation. Can J Bot 69:2084–2087

    Google Scholar 

  • Rice EL (1968) Inhibition of nodulation of inoculated legumes by pioneer plant species from abandoned fields. Bull Torrey Bot Club 95:346–358

    Google Scholar 

  • Rice EL (1971) Inhibition of nodulation of inoculated legumes by leaf leachates from pioneer plant species from abandoned fields. Amer J Bot 58:368–371

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, London

    Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Google Scholar 

  • Robinson T (1980) The organic constituents of higher plants. Their chemistry and interrelationships, 4th edn. Cordus Press, North Amherst

    Google Scholar 

  • Rodier J (1975) Analysis of water. Wiley, New York

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    CAS  Google Scholar 

  • Sampietro DA, Catalan CAN, Vattuone MA (2009) Isolation, identification and characterization of allelochemical/natural products. Science Publishers, Enfield

    Google Scholar 

  • Sanders IR, Koide RT (1994) Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic old-field annuals. Funct Ecol 8:77–84

    Google Scholar 

  • Sardans J, Penuelas J, Rivas-Ubach A (2011) Ecological metabolic: overview of current developments and future challenges. Chemecology 21:191–225

    CAS  Google Scholar 

  • Scherbatskoy T, Klein RM (1983) Response of spruce and birch foliage to leaching by acid mists. J Environ Qual 12:189–195

    CAS  Google Scholar 

  • Schon MK, Einhellig FA (1982) Allelopathic effects of cultivated sunflower on grain sorghum. Bot Gaz 143:505–510

    Google Scholar 

  • Schreiner BP, Koide RT (1993a) Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytol 123:99–105

    CAS  Google Scholar 

  • Schreiner BP, Koide RT (1993b) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113

    CAS  Google Scholar 

  • Shafer SR (1988) Influence of ozone and simulated acid rain on microorganisms in the rhizosphere of Sorghum. Environ Pollut 51:137–152

    Google Scholar 

  • Shafer SR (1992) Responses of microbial populations in the rhizosphere to deposition of simulated acid rain onto foliage and/or soil. Environ Pollut 76:267–278

    CAS  Google Scholar 

  • Shafer SR, Grand LF, Bruck RI, Heagle AS (1985) Formation of ectomycorrhizae on Pinus taeda seedlings exposed to simulated rain. Can J For Res 15:66–71

    Google Scholar 

  • Sharma MP, Reddy UG, Adholeya A (2011) Response of arbuscular fungi on wheat (Triticum aestivum L.) grown conventionally and on beds in a sandy loam soil. Indian J Microbiol 51:384–389

    Google Scholar 

  • Shilling DG, Liebl RA, Worsham AD (1985) Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: the suppression of certain broadleaved weeds and the isolation and identification of phytotoxins. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. ACS Symposium Series 268. American Chemical Society, Washington DC, pp 243–271

    Google Scholar 

  • Smíšek M, Černý S (1970) Activated carbon. Manufacture, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  • Sparks DL (1996) Methods of soil analysis, part 3. Chemical methods, vol 5. Soil Sci Amer Book Series. Soil Science Society of America Inc, Madison

    Google Scholar 

  • Steuter AA, Mazafar A, Goodin JR (1981) Water potential of aqueous polyethylene glycol. Plant Physiol 67:64–67

    CAS  Google Scholar 

  • Summer LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in their functional genomics era. Phytochemistry 62:817–836

    Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    CAS  Google Scholar 

  • Tan KH (1996) Soil Sampling, preparation, and analysis. Marcel Dekker Inc, New York

    Google Scholar 

  • Tang C-S (1986) Continuous trapping techniques for the study of allelochemicals from higher plants. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 113–131

    Google Scholar 

  • Tang C-S, Waiss AC (1978) Short-chain fatty acids as growth inhibitors in decomposing wheat straw. J Chem Ecol 4:225–232

    CAS  Google Scholar 

  • Tang C-S, Young C-C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    CAS  Google Scholar 

  • Tang C-S, Komai K, Huang RS (1989) Allelopathy and the chemistry of the rhizosphere. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones. Institute of Botany, vol 9. Academia, Sinica monograph series, Taipei, pp 217–226

    Google Scholar 

  • Tapin S, Sigoillot J-C, Asther M, Petit-Conil M (2006) Feruloyl esterase utilization for simultaneous processing of nonwood plants into phenolic compounds and pulp fibers. J Agric Food Chem 54:3697–3703

    CAS  Google Scholar 

  • Tukey HB Jr (1966) Leaching of metabolites from above-ground plant parts and its implications. Bull Torrey Bot Club 93:385–401

    CAS  Google Scholar 

  • Tukey HB Jr, Mecklenburg RA (1964) Leaching of metabolites from foliage and subsequent reabsorption and redistribution of the leachate in plants. Amer J Bot 51:737–742

    CAS  Google Scholar 

  • Tukey HB Jr, Wittwer SH, Tukey HB (1957) Leaching of carbohydrates from plant foliage as related to light intensity. Science 126:120–121

    CAS  Google Scholar 

  • Tungate KD, Israel DW, Watson DM, Rufty TW (2007) Potential changes in weed competitiveness in an agreocological system with elevated temperature. Environ Expt Bot 60:42–49

    Google Scholar 

  • Ultra VUY Jr, Tanaka S, Sakurai K, Iwasaki K (2007) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Sci Plant Nutri 53:499–508

    CAS  Google Scholar 

  • Unger PW (1980) Planting date effects on growth, yield, and oil of irrigated sunflower. Agron J 72:914–916

    Google Scholar 

  • Walinga I, van der Lee JJ, Houba VJG, van Hark W, Novozamsky I (1995) Plant analysis manual. Kluwer, Dordrecht

    Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    CAS  Google Scholar 

  • Wallenstein MD, Hess AM, Lewis MR, Steltzer H, Ayres E (2010) Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Bio Biochem 42:484–490

    CAS  Google Scholar 

  • Waller GR, Feng M-C, Fujii Y (1999) Biochemical analysis of allelopathic compounds: plants, microorganisms, and soil secondary metabolites. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 75–98

    Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  Google Scholar 

  • Wang LK, Chang C-C, Shammas NK (2005) Polmeric adsorption and regenerant distillation. In: Wang LK, Hung Y-T, Shammas NK (eds) Handbook of environmental engineering, vol 3: physicochemical treatment processes. Humana Press, Totowa, pp 545–571

    Google Scholar 

  • Weed Science Society of America (1971) Composite list of weeds. Weed Sci 19:437–476

    Google Scholar 

  • Willard JI, Penner D (1976) Benzoxazinones: cyclic hydroxamic acids found in plants. Residue Rev 64:67–76

    CAS  Google Scholar 

  • Willis RJ (1985) The Historical bases of the concept of allelopathy. J Hist Biol 18:71–102

    Google Scholar 

  • Willis RJ (1994) Terminology and trends in allelopathy. Allelopath J 1:6–28

    Google Scholar 

  • Willis RJ (2007) The history of allelopathy. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Wilson RE, Rice EL (1968) Allelopathy as expressed by Helinathus annuus and its role in old-field succession. Bull Torrey Bot Club 95:432–448

    CAS  Google Scholar 

  • Worsham AD (1984) Crop residues kill weeds: allelopathy at work with wheat and rye. Crop Soils 37:18–20

    Google Scholar 

  • Worsham AD (1989) Current and potential techniques using allelopathy as an aid in weed management. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals mycotoxins insect pheromones allomones. Academia Sinica monograph series no. 9, Taipei, pp 275–291

    Google Scholar 

  • Worsham AD (1990) Weed management strategies for conservation tillage in the 1990’s. In: Mueller JP, Wagger MG (eds) Conservation tillage for agriculture in the 1990’s: proceedings of the 1990 southern region conservation tillage conference. Special bulletin 90-1. North Carolina State University, Raleigh, pp 42–47

    Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000a) Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in root tissue. J Agric Food Chem 48:5321–5325

    CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000b) Distribution and exudation of allelochemicals in wheat Triticum aestivum. J Chem Ecol 26:2141–2154

    CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001a) Allelochemicals in wheat (Triticum aestivum L): cultivar differences in the exudation of phenolic acids. J Agric Food Chem 49:3742–3745

    CAS  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T, An M (2001b) Screening methods for evaluation of crop allelopathic potential. Bot Rev 67:403–415

    Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (2000c) Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust J Agric Res 51:259–266

    Google Scholar 

  • Wurst S, Vender V, Rillig MC (2010) Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol 211:19–26

    Google Scholar 

  • Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P (2008) Improved identification of metabolite in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta 614:127–133

    CAS  Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    CAS  Google Scholar 

  • Yongoing MA (2005) Allelopathic studies of common wheat (Triticum aestivum L). Weed Biol Manag 5:93–104

    Google Scholar 

  • Yu Z, Dahlgren RA (2000) Evaluation of methods for measuring polyphenols in conifer foliage. J Chem Ecol 26:2119–2140

    CAS  Google Scholar 

  • Zheljazkov VD, Vick BA, Ebelhar MW, Buehring N, Baldwin BS, Astatkie T, Miller JF (2008) Yield, oil content, and composition of sunflower grown at multiple locations in Mississippi. Agron J 100:635–642

    Google Scholar 

  • Zheljazkov VD, Vick BA, Baldwin BS, Buehring N, Coker C, Astatkie T, Johnson B (2011) Oil productivity and composition of sunflower as a function of hybrid and planting date. Ind Crop Prod 33:537–543

    CAS  Google Scholar 

  • Zimdahl RL (1989) Weeds and words. The etymology of scientific names of weeds and crops. Iowa State University Press, Ames

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blum, U. (2014). Hypothetical Standard Screening Bioassays. In: Plant-Plant Allelopathic Interactions II. Springer, Cham. https://doi.org/10.1007/978-3-319-04732-4_4

Download citation

Publish with us

Policies and ethics