Localization Based on Business Interactions Through a Simulated Annealing Algorithm

  • Rosa Mª Sánchez-SaizEmail author
  • José Manuel Galán
  • José Ignacio Santos
Conference paper
Part of the Lecture Notes in Management and Industrial Engineering book series (LNMIE)


This work is aimed at presenting a simulated annealing algorithm as a decision support tool for the localization problem of stores in metropolitan areas. The approach is based on the empirical estimation of attraction and repulsive forces that emerge as a consequence of the spatial interaction among businesses. Quantification of these externalities is carried out by means of networks modelling techniques. The methodology is illustrated with a case study in the city of Turin (Italy).


Simulated annealing Localization problem Complex networks Externalities Decision support tools 


  1. 1.
    Cerný V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45:41–51. doi:10.1007/BF00940812CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dave PH, Dave HB (2008) Design and analysis of algorithms. Pearson Education/Dorling Kindersley (India), DelhiGoogle Scholar
  3. 3.
    Duranton G, Overman HG (2005) Testing for localization using micro-geographic data. Rev Econ Stud 72(4):1077–1106. doi: 10.1111/0034-6527.00362CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gómez S, Jensen P, Arenas A (2009) Analysis of community structure in networks of correlated data. Phys Rev E 80(1).
  5. 5.
    Hoover EM, Giarratani F (1984) An Introduction to regional economics. McGraw-HillGoogle Scholar
  6. 6.
    Hotelling H (1929) Stability in competition. Econ J 39(153):41–57CrossRefGoogle Scholar
  7. 7.
    Jensen P (2006) Network-based predictions of retail store commercial categories and optimal locations. Phys Rev E—Stat, Nonlinear, Soft Matter Phys 74(3).
  8. 8.
    Jensen P (2009) Analyzing the localization of retail stores with complex systems tools. Lect Note Comput Sci 5772:10–20. doi:10.1007/978-3-642-03915-7_2CrossRefGoogle Scholar
  9. 9.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. doi:10.1126/science.220.4598.671CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256. doi:10.1234/12345678CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rosa Mª Sánchez-Saiz
    • 1
    Email author
  • José Manuel Galán
    • 1
  • José Ignacio Santos
    • 1
  1. 1.Departamento de Ingeniería Civil.EPSÁrea de Organización de EmpresasBurgosSpain

Personalised recommendations