Skip to main content

Discrepancy Theory and Quasi-Monte Carlo Integration

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2107))

Abstract

In this chapter we show the deep connections between discrepancy theory on the one hand and quasi-Monte Carlo integration on the other. Discrepancy theory was established as an area of research going back to the seminal paper by Weyl [117], whereas Monte Carlo (and later quasi-Monte Carlo) was invented in the 1940s by John von Neumann and Stanislaw Ulam to solve practical problems. The connection between these areas is well understood and will be presented here. We further include state of the art methods for quasi-Monte Carlo integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables. (U.S. Government Printing Office, Washington, DC, 1964)

    MATH  Google Scholar 

  2. C. Aistleitner, Covering numbers, dyadic chaining and discrepancy. J. Complexity 27(6), 531–540 (2011). doi:10.1016/j.jco.2011.03.001

  3. N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950). doi:10.2307/1990404

  4. N.S. Bakhvalov, On Approximate Calculation of Multiple Integrals. Vestnik Moskovskogo Universiteta, Seriya Matematiki, Mehaniki, Astronomi, Fiziki, Himii 4, 3–18 (1959). In Russian

    Google Scholar 

  5. J. Baldeaux, J. Dick, J. Greslehner, F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules. J. Complexity 27(3–4), 281–299 (2011). doi:10.1016/j.jco.2010.06.002

  6. J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens, F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59(3), 403–431 (2012). doi:10.1007/s11075-011-9497-y

  7. R. Béjian, Minoration de la discrépance d’une suite quelconque sur T. Acta Arithmetica 41, 185–202 (1982)

    Google Scholar 

  8. D. Bilyk, M.T. Lacey, A. Vagharshakyan, On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470–2502 (2008). doi:10.1016/j.jfa.2007.09.010

  9. J. Brauchart, J. Dick, A simple proof of stolarsky’s invariance principle. Proc. Am. Math. Soc. 141(6), 2085–2096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. V.A. Bykovskii, The discrepancy of the Korobov lattice points. Izvestiya: Mathematics 76(3), 446–465 (2012). doi:10.1070/IM2012v076n03ABEH002591

  11. W.W.L. Chen, On irregularities of point distribution. Mathematika 27, 153–170 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. W.W.L. Chen, M.M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67–95 (2002). doi:10.1515/crll.2002.037

  13. W.W.L. Chen, M.M. Skriganov, Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution, in Diophantine approximation. Festschrift for Wolfgang Schmidt. Based on lectures given at a conference at the Erwin Schrödinger Institute, ed. by Schlickewei, Hans Peter Developments in Mathematics, vol. 16 (Springer, Wien, 2008), pp. 141–159. doi:10.1007/978-3-211-74280-8_7

  14. R. Cools, J.N. Lyness, Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree. Math. Comput. 70(236), 1549–1567 (2001). doi:10.1090/S0025-5718-01-01326-6

  15. L.L. Cristea, J. Dick, F. Pillichshammer, On the mean square weighted \(\mathcal{L}_{2}\) discrepancy of randomized digital nets in prime base. J. Complexity 22(5), 605–629 (2006). doi:10.1016/j.jco.2006.03.005

  16. H. Davenport, Note on irregularities of distribution. Math. Lond. 3, 131–135 (1956). doi:10.1112/S0025579300001807

  17. J. Dick, F.Y. Kuo, F. Pillichshammer, I.H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74(252), 1895–1921 (2005). doi:10.1090/S0025-5718-05-01742-4

  18. J. Dick, On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity 20(4), 493–522 (2004). doi:10.1016/j.jco.2003.11.008

  19. J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45(5), 2141–2176 (2007). doi:10.1137/060658916

  20. J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46(3), 1519–1553 (2008). doi:10.1137/060666639

  21. J. Dick, The decay of the Walsh coefficients of smooth functions. Bull. Aust. Math. Soc. 80(3), 430–453 (2009). doi:10.1017/S0004972709000392

  22. J. Dick, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Stat. 39(3), 1372–1398 (2011). doi:10.1214/11-AOS880

  23. J. Dick, Quasi-Monte Carlo numerical integration on \(\mathbb{R}^{s}\): digital nets and worst-case error. SIAM J. Numer. Anal. 49(4), 1661–1691 (2011). doi:10.1137/100789853

  24. J. Dick, J. Baldeaux, Equidistribution properties of generalized nets and sequences., in Monte Carlo and quasi-Monte Carlo methods 2008. Proceedings of the 8th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing, Montréal, Canada, July 6–11, 2008., ed. by L’Ecuyer, P., Owen, A.B. (Springer, Berlin, 2009), pp. 305–322. doi:10.1007/978-3-642-04107-5_19

  25. J. Dick, P. Kritzer, Duality theory and propagation rules for generalized digital nets. Math. Comput. 79(270), 993–1017 (2010). doi:10.1090/S0025-5718-09-02315-1

  26. J. Dick, H. Niederreiter, On the exact t-value of Niederreiter and Sobol’ sequences. J. Complexity 24(5-6), 572–581 (2008). doi:10.1016/j.jco.2008.05.004

  27. J. Dick, F. Pillichshammer, Optimal \(\mathcal{L}_{2}\) discrepancy bounds for higher order digital sequences over the finite field \(\mathbb{F}_{2}\). Acta Arithmetica 126(1), 65–99 (2014)

    Article  MathSciNet  Google Scholar 

  28. J. Dick, F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21(2), 149–195 (2005). doi:10.1016/j.jco.2004.07.003

  29. J. Dick, F. Pillichshammer, On the mean square weighted \(\mathcal{L}_{2}\) discrepancy of randomized digital (t, m, s)-nets over \(\mathbb{Z}_{2}\). Acta Arithmetica 117(4), 371–403 (2005). doi:10.4064/aa117-4-4

  30. J. Dick, F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules. J. Complexity 23(4-6), 436–453 (2007). doi:10.1016/j.jco.2007.02.001

  31. J. Dick, F. Pillichshammer, Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  32. J. Dick, G. Leobacher, F. Pillichshammer, Construction algorithms for digital nets with low weighted star discrepancy. SIAM J. Numer. Anal. 43(1), 76–95 (2005). doi:10.1137/040604662

  33. J. Dick, I.H. Sloan, X. Wang, H. Woźniakowski, Liberating the weights. J. Complexity 20(5), 593–623 (2004). doi:10.1016/j.jco.2003.06.002

  34. J. Dick, I.H. Sloan, X. Wang, H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103(1), 63–97 (2006). doi:10.1007/s00211-005-0674-6

  35. J. Dick, P. Kritzer, G. Leobacher, F. Pillichshammer, Constructions of general polynomial lattice rules based on the weighted star discrepancy. Finite Fields Appl. 13(4), 1045–1070 (2007). doi:10.1016/j.ffa.2006.09.001

  36. J. Dick, P. Kritzer, F. Pillichshammer, W.C. Schmid, On the existence of higher order polynomial lattices based on a generalized figure of merit. J. Complexity 23(4–6), 581–593 (2007). doi:10.1016/j.jco.2006.12.003

  37. J. Dick, G. Larcher, F. Pillichshammer, H. Woźniakowski, Exponential convergence and tractability of multivariate integration for Korobov spaces. Math. Comput. 80(274), 905–930 (2011). doi:10.1090/S0025-5718-2010-02433-0

  38. B. Doerr, M. Gnewuch, Construction of low-discrepancy point sets of small size by bracketing covers and dependent randomized rounding, in Monte Carlo and Quasi-Monte Carlo Methods 2006 (Springer, Berlin, 2008), pp. 299–312

    Google Scholar 

  39. B. Doerr, M. Gnewuch, A. Srivastav, Bounds and constructions for the star-discrepancy via δ-covers. J. Complexity 21(5), 691–709 (2005). doi:10.1016/j.jco.2005.05.002

  40. B. Doerr, M. Gnewuch, P. Kritzer, F. Pillichshammer, Component-by-component construction of low-discrepancy point sets of small size. Monte Carlo Methods Appl. 14(2), 129–149 (2008). doi:10.1515/MCMA.2008.007

  41. H. Faure, Discrépance de suites associées à un système de numération (en dimension s). Acta Arithmetica 41, 337–351 (1982)

    MathSciNet  MATH  Google Scholar 

  42. K.K. Frolov, An upper estimate of the discrepancy in the L p -metric, 2 ≤ p < . Dokl. Akad. Nauk SSSR 252, 805–807 (1980)

    Google Scholar 

  43. E.N. Gilbert, A comparison of signalling alphabets. Bell Syst. Tech. J. 3, 504–522 (1952)

    Article  Google Scholar 

  44. M. Gnewuch, Infinite-dimensional integration on weighted Hilbert spaces. Math. Comput. 81(280), 2175–2205 (2012). doi:10.1090/S0025-5718-2012-02583-X

  45. M. Gnewuch, Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces. J. Complexity 28(1), 2–17 (2012). doi:10.1016/j.jco.2011.02.003

  46. M. Gnewuch, A. Srivastav, C. Winzen, Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. J. Complexity 25(2), 115–127 (2009). doi:10.1016/j.jco.2008.10.001

  47. S. Heinrich, F.J. Hickernell, R.-X. Yue, Optimal quadrature for Haar wavelet spaces. Math. Comput. 73(245), 259–277 (2004). doi:10.1090/S0025-5718-03-01531-X

  48. S. Heinrich, E. Novak, G.W. Wasilkowski, H. Woźniakowski, The inverse of the star-discrepancy depends linearly on the dimension. Acta Arithmetica 96(3), 279–302 (2001). doi:10.4064/aa96-3-7

  49. P. Hellekalek, General discrepancy estimates: The Walsh function system. Acta Arithmetica 67(3), 209–218 (1994)

    MathSciNet  MATH  Google Scholar 

  50. F.J. Hickernell, H. Niederreiter, The existence of good extensible rank-1 lattices. J. Complexity 19(3), 286–300 (2003). doi:10.1016/S0885-064X(02)00026-2

  51. A. Hinrichs, Covering numbers, Vapnik-Červonenkis classes and bounds for the star-discrepancy. J. Complexity 20(4), 477–483 (2004). doi:10.1016/j.jco.2004.01.001

  52. A. Hinrichs, F. Pillichshammer, W.C. Schmid, Tractability properties of the weighted star discrepancy. J. Complexity 24(2), 134–143 (2008). doi:10.1016/j.jco.2007.08.002

  53. E. Hlawka, Über die Diskrepanz mehrdimensionaler Folgen mod 1. Math. Z. 77, 273–284 (1961). doi:10.1007/BF01180179

  54. E. Hlawka, Zur angenäherten Berechnung mehrfacher Integrale. Monatsh. Math. 66, 140–151 (1962). doi:10.1007/BF01387711

  55. H.S. Hong, F.J. Hickernell, Algorithm 823: Implementing scrambled digital sequences. ACM Trans. Math. Softw. 29(2), 95–109 (2003). doi:10.1145/779359.779360

  56. S. Joe, Component by component construction of rank-1 lattice rules having O(n −1(ln(n))d) star discrepancy, in Monte Carlo and Quasi-Monte Carlo Methods 2002, ed. by H. Niederreiter (Springer, Berlin-Heidelberg-New York, 2004)

    Google Scholar 

  57. S. Joe, Construction of good rank-1 lattice rules based on the weighted star discrepancy., in Monte Carlo and Quasi-Monte Carlo Methods 2004, ed. by H. Niederreiter, D. Talay (Springer, Berlin, 2006), pp. 181–196

    Google Scholar 

  58. S. Joe, I.H. Sloan, On computing the lattice rule criterion R. Math. Comput. 59(200), 557–568 (1992). doi:10.2307/2153074

  59. N.M. Korobov, Approximate evolution of repeated integrals. Dokl. Akad. Nauk SSSR 124, 1207–1210 (1959)

    MathSciNet  MATH  Google Scholar 

  60. N.M. Korobov, Number-Theoretic Methods in Approximate Analysis (Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963)

    MATH  Google Scholar 

  61. P. Kritzer, Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences. J. Complexity 22(3), 336–347 (2006). doi:10.1016/j.jco.2005.10.004

  62. P. Kritzer, F. Pillichshammer, A lower bound on a quantity related to the quality of polynomial lattices. Funct. Approx. Comment. Math. 45(1), 125–137 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. P. Kritzer, F. Pillichshammer, Low discrepancy polynomial lattice point sets. J. Number Theory 132(11), 2510–2534 (2012). doi:10.1016/j.jnt.2012.05.006

  64. P. Kritzer, F. Pillichshammer, H. Woźniakowski, Multivariate integration of infinitely many times differentiable functions in weighted Korobov spaces. Mathematics of Computation 83(287), 1189–1206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. (Pure and Applied Mathematics. New York etc.: Wiley, a Wiley-Interscience Publication, 390 p., 1974; reprint, Dover Publications, Mineola, NY, 2006)

    Google Scholar 

  66. F.Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301–320 (2003). doi:10.1016/S0885-064X(03)00006-2

  67. G. Larcher, F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arithmetica 106(4), 379–408 (2003). doi:10.4064/aa106-4-4

  68. G. Larcher, A. Lauss, H. Niederreiter, W.C. Schmid, Optimal polynomials for (t, m, s)-nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Anal. 33(6), 2239–2253 (1996). doi:10.1137/S0036142994264705

  69. G. Larcher, A best lower bound for good lattice points. Monatsh. Math. 104, 45–51 (1987). doi:10.1007/BF01540524

  70. G. Larcher, Nets obtained from rational functions over finite fields. Acta Arithmetica 63(1), 1–13 (1993)

    MathSciNet  MATH  Google Scholar 

  71. G. Leobacher, F. Pillichshammer, Bounds for the weighted L p discrepancy and tractability of integration. J. Complexity 19(4), 529–547 (2003). doi:10.1016/S0885-064X(03)00009-8

  72. W.-L. Loh, On the asymptotic distribution of scrambled net quadrature. Ann. Statist. 31(4), 1282–1324 (2003). doi:10.1214/aos/1059655914

  73. J.N. Lyness, Notes on lattice rules. Numerical integration and its complexity. J. Complexity 19(3), 321–331 (2003). doi:10.1016/S0885-064X(03)00005-0

  74. J. Matoušek, On the L 2-discrepancy for anchored boxes. J. Complexity 14(4), 527–556 (1998). doi:10.1006/jcom.1998.0489

  75. J. Matoušek, Geometric discrepancy. An illustrated guide. Algorithms and Combinatorics, vol. 18 (Springer, Berlin-Heidelberg-New York, 1999), p. 288

    Google Scholar 

  76. H. Niederreiter, Existence of good lattice points in the sense of Hlawka. Monatsh. Math. 86, 203–219 (1978). doi:10.1007/BF01659720

  77. H. Niederreiter, Pseudozufallszahlen und die Theorie der Gleichverteilung. (Pseudo-random numbers and the theory of uniform distribution). Sitzungsber. Abt. II Österreich. Akad. Wiss. Math.-Naturwiss. Kl. 195, 109–138 (1986)

    Google Scholar 

  78. H. Niederreiter, Rational functions with partial quotients of small degree in their continued fraction expansion. Monatsh. Math. 103, 269–288 (1987). doi:10.1007/BF01318069

  79. H. Niederreiter, Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988). doi:10.1016/0022-314X(88)90025-X

  80. H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42(1), 143–166 (1992)

    MathSciNet  MATH  Google Scholar 

  81. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63 (SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992), p. 241

    Google Scholar 

  82. H. Niederreiter, C. Xing, Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2(3), 241–273 (1996). doi:10.1006/ffta.1996.0016

  83. H. Niederreiter, C. Xing, Algebraic curves over finite fields with many rational points and their applications, in Number theory, ed. by R.P. Bambah, (Birkhäuser. Trends in Mathematics, Basel, 2000), pp. 287–300

    Chapter  Google Scholar 

  84. E. Novak, Deterministic and stochastic error bounds in numerical analysis. Lecture Notes in Mathematics, vol. 1349 (Springer, Berlin, 1988), p. 113. doi:10.1007/BFb0079792

  85. E. Novak, H. Woźniakowski, When are integration and discrepancy tractable?, in Foundations of computational mathematics. Conference, Oxford, GB, July 18–28, 1999, ed. by Ronald A. DeVore, Lond. Math. Soc. Lect. Note Ser., vol. 284 (Cambridge University Press, Cambridge, 2001), pp. 211–266

    Google Scholar 

  86. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems. Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6 (European Mathematical Society (EMS), Zürich, 2008), p. 384

    Google Scholar 

  87. E. Novak, H. Woźniakowski, L 2 Discrepancy and Multivariate Integration., ed. by W.W.L. Chen, et al., Analytic number theory. Essays in honour of Klaus Roth on the occasion of his 80th birthday (Cambridge University Press, Cambridge, 2009), pp. 359–388

    Google Scholar 

  88. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems. Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12 (European Mathematical Society (EMS), Zürich, 2010), p. 657

    Google Scholar 

  89. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems. Volume III: Standard Information for Operators (European Mathematical Society (EMS), Zürich, 2012), p. 586. doi:10.4171/116

  90. D. Nuyens, R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75(254), 903–920 (2006). doi:10.1090/S0025-5718-06-01785-6

  91. D. Nuyens, R. Cools, Fast Component-by-Component Construction, A Reprise for Different Kernels, ed. by H. Niederreiter, et al., Monte Carlo and quasi-Monte Carlo methods 2004. Refereed proceedings of the sixth international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computation, Juan-les-Pins, France, June 7–10, 2004 (Springer, Berlin, 2006), pp. 373–387. doi:10.1007/3-540-31186-6

  92. D. Nuyens, R. Cools, Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22(1), 4–28 (2006). doi:10.1016/j.jco.2005.07.002

  93. A.B. Owen, Randomly Permuted (t,m,s)-Nets and (t,s)-Sequences. ed. by H. Niederreiter, et al., Monte Carlo and quasi-Monte Carlo methods in scientific computing. Proceedings of a conference at the University of Nevada, Las Vegas, Nevada, USA, June 23–25, 1994 (Springer, Berlin, 1995). Lect. Notes Stat. 106, pp. 299–317

    Google Scholar 

  94. A.B. Owen, Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34(5), 1884–1910 (1997). doi:10.1137/S0036142994277468

  95. A.B. Owen, Scrambled net variance for intergrals of smooth functions. Ann. Stat. 25(4), 1541–1562 (1997). doi:10.1214/aos/1031594731

  96. F. Pillichshammer, Polynomial Lattice Point Sets., in Monte Carlo and Quasi-Monte Carlo Methods 2010, ed. by L. Plaskota, H. Woźniakowski, Springer Proceedings in Mathematics and Statistics, vol. 23 (Springer, Berlin, 2012), pp. 189–210

    Google Scholar 

  97. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and series. Vol. 1: Elementary functions. Vol. 2: Special functions. Transl. from the Russian by N. M. Queen. (Gordon & Breach Science Publishers, New York, 1986), p. 798

    MATH  Google Scholar 

  98. K.F. Roth, On irregularities of distribution. Mathematika 1, 73–79 (1954). doi:10.1112/S0025579300000541

  99. K.F. Roth, On irregularities of distribution. III. Acta Arithmetica 35, 373–384 (1979)

    MATH  Google Scholar 

  100. K.F. Roth, On irregularities of distribution. IV. Acta Arithmetica 37, 67–75 (1980)

    MATH  Google Scholar 

  101. W.M. Schmidt, Irregularities of distribution. VII. Acta Arithmetica 21, 45–50 (1972)

    MATH  Google Scholar 

  102. W.M. Schmidt, Irregularities of distribution. X., in Number Theory and Algebra. Collect. Pap. dedic. H. B. Mann, A. E. Ross, O. Taussky-Todd (Academic Press, New York, 1977), pp. 311–329

    Google Scholar 

  103. V. Sinescu, S. Joe, Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy, ed. by A. Keller, et al., Monte Carlo and quasi-Monte Carlo methods 2006. Selected papers based on the presentations at the 7th international conference ‘Monte Carlo and quasi-Monte Carlo methods in scientific computing’, Ulm, Germany, August 14–18, 2006 (Springer, Berlin, 2008), pp. 645–658

    Google Scholar 

  104. V. Sinescu, P. L’Ecuyer, On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules, ed. by P. L’ Ecuyer, et al., Monte Carlo and quasi-Monte Carlo methods 2008. Proceedings of the 8th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing, Montréal, Canada, July 6–11, 2008 (Springer, Berlin, 2009), pp. 603–616. doi:10.1007/978-3-642-04107-5_39

  105. M.M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25–49 (2006). doi:10.1515/CRELLE.2006.085

  106. I.H. Sloan, S. Joe, Lattice Methods for Multiple Integration. (Oxford Science Publications. Clarendon Press, Oxford, 1994), p. 239

    MATH  Google Scholar 

  107. I.H. Sloan, A.V. Reztsov, Component-by-component construction of good lattice rules. Math. Comput. 71(237), 263–273 (2002). doi:10.1090/S0025-5718-01-01342-4

  108. I.H. Sloan, F.Y. Kuo, S. Joe, Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40(5), 1650–1665 (2002). doi:10.1137/S0036142901393942

  109. I.H. Sloan, F.Y. Kuo, S. Joe, On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput. 71(240), 1609–1640 (2002). doi:10.1090/S0025-5718-02-01420-5

  110. I.H. Sloan, H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14(1), 1–33 (1998). doi:10.1006/jcom.1997.0463

  111. I.H. Sloan, H. Woźniakowski, Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17(4), 697–721 (2001). doi:10.1006/jcom.2001.0599

  112. I.M. Sobol, On the distribution of points in a cube and the approximate evaluation of integrals. Z. Vyčisl. Mat. i Mat. Fiz. 7, 784–802 (1967). doi:10.1016/0041-5553(67)90144-9

  113. K.B. Stolarsky, Sums of distances between points on a sphere. II. Proc. Am. Math. Soc. 41, 575–582 (1973). doi:10.2307/2039137

  114. V.N. Temlyakov, Cubature formulas, discrepancy, and nonlinear approximation. Numerical integration and its complexity. J. Complexity 19(3), 352–391 (2003). doi:10.1016/S0885-064X(02)00025-0

  115. R.R. Varshamov, The evaluation of signals in codes with correction of errors. Dokl. Akad. Nauk SSSR 117, 739–741 (1957)

    MathSciNet  MATH  Google Scholar 

  116. I.F. Šarygin, A lower estimate for the error of quadrature formulas for certain classes of functions. Zh. Vychisl. Mat. i Mat. Fiz. 3, 370–376 (1963)

    Google Scholar 

  117. H. Weyl, Über die Gleichverteilung mod. Eins. Math. Ann. 77, 313–352 (1916). (German)

    Google Scholar 

  118. H. Woźniakowski, Efficiency of Quasi-Monte Carlo Algorithms for High Dimensional Integrals, ed. by H. Niederreiter, et al., Monte Carlo and quasi-Monte Carlo methods 1998. Proceedings of a conference held at the Claremont Graduate Univ., Claremont, CA, USA, June 22–26, 1998 (Springer, Berlin, 2000), pp. 114–136

    Google Scholar 

  119. S.K. Zaremba, Some applications of multidimensional integration by parts. Ann. Poln. Math. 21, 85–96 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by a Queen Elizabeth II Fellowship from the Australian Research Council. The second author is partially supported by the Austrian Science Foundation (FWF), Project S9609, that is part of the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory” and Project F5509-N26, that is part of the Special Research Program “Quasi-Monte Carlo Methodes: Theory and Applications”.

The authors thank Michaela Szölgyenyi and Henryk Woźniakowski for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Dick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dick, J., Pillichshammer, F. (2014). Discrepancy Theory and Quasi-Monte Carlo Integration. In: Chen, W., Srivastav, A., Travaglini, G. (eds) A Panorama of Discrepancy Theory. Lecture Notes in Mathematics, vol 2107. Springer, Cham. https://doi.org/10.1007/978-3-319-04696-9_9

Download citation

Publish with us

Policies and ethics