Skip to main content

On the Distribution of Solutions to Diophantine Equations

  • Chapter
  • First Online:
Book cover A Panorama of Discrepancy Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2107))

Abstract

Let P be a positive homogeneous polynomial of degree d, with integer coefficients, and for natural numbers \(\lambda\) consider the solution sets

$$\displaystyle{Z_{P,\lambda } =\{ m \in \mathbf{Z}^{n}:\ P(m) =\lambda \}.}$$

We’ll study the asymptotic distribution of the images of these sets when projected onto the unit level surface {P = 1} via the dilations, and also when mapped to the flat torus T n. Assuming the number of variables n is large enough with respect to the degree d we will obtain quantitative estimates on the rate of equi-distribution in terms of upper bounds on the associated discrepancy. Our main tool will be the Hardy-Littlewood method of exponential sums, which will be utilized to obtain asymptotic expansions of the Fourier transform of the solution sets

$$\displaystyle{\omega _{P,\lambda }(\xi ) =\sum _{m\in \mathbf{Z}^{n},\,P(m)=\lambda }e^{2\pi im\cdot \xi }\;,}$$

relating these exponential sums to Fourier transforms of surface carried measures. This will allow us to compare the discrete and continuous case and will be crucial in our estimates on the discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Arnol’d, S.M. Gusejn-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts. Transl. from the Russian by Ian Porteous, ed. by V. I. Arnol’d. Monographs in Mathematics, vol. 82 (Birkhäuser, Boston-Basel-Stuttgart, 1985), p. 382

    Google Scholar 

  2. V.I. Arnol’d, S.M. Gusejn-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume II: Monodromy and asymptotics of integrals. Transl. from the Russian by Hugh Porteous. Monographs in Mathematics, vol. 83 (Birkhäuser Verlag,Boston, MA, 1988), p. 492

    Google Scholar 

  3. J. Beck, Sums of distances between points on a sphere—an application of the theory of irregularities of distribution to discrete geometry. Mathematika 31, 33–41 (1984). doi:10.1112/S0025579300010639

    Article  MathSciNet  MATH  Google Scholar 

  4. B.J. Birch, Forms in many variables. Proc. Roy. Soc. Lond. Ser. A 265, 245–263 (1962). doi:10.1098/rspa.1962.0007

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Davenport, Cubic forms in thirty-two variables. Phil. Trans. Roy. Soc. Lond. Ser. A 251, 193–232 (1959). doi:10.1098/rsta.1959.0002

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Duke, R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99(1), 49–57 (1990). doi:10.1007/BF01234411

    Article  MathSciNet  MATH  Google Scholar 

  7. E.P. Golubeva, O.M. Fomenko, Application of spherical functions to a problem of the theory of quadratic forms. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 144, 38–45 (1985)

    MathSciNet  MATH  Google Scholar 

  8. G.H. Hardy, A. Wiles, E.M. Wright, An introduction to the theory of numbers. Edited and revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles. 6th ed. (Oxford University Press, Oxford, 2008), p. 621

    MATH  Google Scholar 

  9. D.R. Heath-Brown, Cubic forms in 10 variables. Proc. Lond. Math. Soc. III. Ser. 47, 225–257 (1983). doi:10.1112/plms/s3-47.2.225

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Hurewicz, H. Wallman, Dimension Theory. Princeton Mathematical Series, vol. 4 (Princeton University Press, Princeton, NJ, 1941), p. 165

    Google Scholar 

  11. A. Magyar, Diophantine equations and ergodic theorems. Am. J. Math. 124(5), 921–953 (2002). doi:10.1353/ajm.2002.0029

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Magyar, On the discrepancy of point distributions on spheres and hyperbolic spaces. Monatsh. Math. 136(4), 287–296 (2002). doi:10.1007/s00605-002-0480-5

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Magyar, On the distribution of lattice points on spheres and level surfaces of polynomials. J. Number Theory 122(1), 69–83 (2007). doi:10.1016/j.jnt.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Sarnak, Some Applications of Modular Forms. Cambridge Tracts in Mathematics, vol. 99 (Cambridge University Press, Cambridge, 1990), p. 111

    Google Scholar 

  15. W.M. Schmidt, Irregularities of distribution. IV. Invent. Math. 7, 55–82 (1969). doi:10.1007/BF01418774

    Article  MATH  Google Scholar 

  16. W.M. Schmidt, The density of integer points on homogeneous varieties. Acta Math. 154, 243–296 (1985). doi:10.1007/BF02392473

    Article  MathSciNet  MATH  Google Scholar 

  17. E.M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43 (Princeton University Press, Princeton, NJ, 1993), p. 695

    Google Scholar 

  18. T.D. Wooley, On Vinogradov’s mean value theorem. Mathematika 39(2), 379–399 (1992). doi:10.1112/S0025579300015102

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Magyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magyar, Á. (2014). On the Distribution of Solutions to Diophantine Equations. In: Chen, W., Srivastav, A., Travaglini, G. (eds) A Panorama of Discrepancy Theory. Lecture Notes in Mathematics, vol 2107. Springer, Cham. https://doi.org/10.1007/978-3-319-04696-9_8

Download citation

Publish with us

Policies and ethics