Advertisement

Kinect Quality Enhancement for Triangular Mesh Reconstruction with a Medical Image Application

  • A. KhongmaEmail author
  • M. Ruchanurucks
  • T. Koanantakool
  • T. Phatrapornnant
  • Y. Koike
  • P. Rakprayoon
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 543)

Abstract

This chapter presents a method to estimate proportion between skin burn area and body surface using computer vision techniques. The data are derived using Microsoft Kinect. We first show a comprehensive Kinect calibration method. Then the color image is segmented into 3 sections, background, burn area, and body area. The segmentation method developed is based on watershed algorithm and Chebyshev’s inequality. The segmented color image is to be mapped with the depth image to generate triangular mesh. We discover that reconstructing the 3D mesh, using marching cube algorithm, directly from Kinect depth information is erroneous. Hence, we propose to filter the depth image first. After the enhanced mesh is derived, the proportion between 3D meshes of burn area and 3D meshes of body surface can be found using Heron’s formula. Finally, our paradigm is tested on real burn patients.

Keywords

Microsoft kinect Burn patient Triangular mesh reconstruction 

References

  1. 1.
    Wikipedia, Stereo camera (2011), http://en.wikipedia.org/wiki/Stereo_camera. Accessed 7 Sept 2011
  2. 2.
    B. des Bouvrie, Improving RGBD Indoor Mapping, The Netherlands (2011)Google Scholar
  3. 3.
    K. Conley, Wikipedia (2011), http://www.ros.org/wiki/kinect_node. Accessed May 2011
  4. 4.
    K. Ogawara, K. Ikeuchi, M. Ruchanurucks, Integrating region growing and classification for segmentation and matting, Tokyo (2008)Google Scholar
  5. 5.
    H.E. Cline, W.E. Lorensen, Marching cubes: a high resolution 3D surface construction algorithm, in Proceeding SIGGRAPH ‘87 Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (1987)Google Scholar
  6. 6.
    J.W. Wilson, Problem solving with heron’s formula, in The Northwest Mathematics Conference (1986)Google Scholar
  7. 7.
    Wikipedia, Kinect (2011), http://en.wikipedia.org/wiki/Kinect. Accessed 3 Sept 2011
  8. 8.
    K. Khoshelham, Accuracy analysis of Kinect depth data (ITC Faculty of Geo-information Science and Earth Observation, University of Twente, 2011) Google Scholar
  9. 9.
    A. Khongma, M. Ruchanurucks, T. Phatrapornnant, Y. Koike, P. Rakprayoon, Kinect calibration and quality improvement for triangular mesh reconstruction, Bangkok (2012) Google Scholar
  10. 10.
    Teardown, Microsoft Kinect Teardown (2010), http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1. Accessed 4 Nov 2010
  11. 11.
    Wikipedia, File: KinectTechnologiesE3.jpg (2011), http://en.wikipedia.org/wiki/File:KinectTechnologiesE3.jpg. Accessed 14 Jan 2011
  12. 12.
    M. Zlatka, Triangulation methods (2009), pp. 9–10Google Scholar
  13. 13.
    A. Shpunt, Y. Arieli, B. Freedman, Distance-varying illumination and imaging techniques for depth mapping, United States Patent Application (2010)Google Scholar
  14. 14.
    P. Cignoni, C. Montani, P. Pingi, R. Scopigno, C. Rocchini, A low cost 3D scanner based on structured light, The Eurographics Association and Blackwell Publisher, vol. 20 (2001)Google Scholar
  15. 15.
    K. Khoshelham, Accuracy analysis of kinect depth data (International Society for Photogrammetry and Remote Sensing, 2011), p. 6Google Scholar
  16. 16.
    Z. Jianhui, Y. Zhiyong, D. Yihua, Z. Yuanyuan L. Chengjiang, Improvements on IPD algorithm for triangular mesh reconstruction, in International Conference on Multimedia Information Networking and Security (2009)Google Scholar
  17. 17.
    H.E. Cline, W.E. Lorensen, Marching cubes: a high resolution 3D surface construction algorithm, in Proceeding SIGGRAPH ‘87 Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (1987)Google Scholar
  18. 18.
    J.W. Wilson, Problem solving with Heron’s formula, in The Northwest Mathematics Conference (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. Khongma
    • 1
    Email author
  • M. Ruchanurucks
    • 2
  • T. Koanantakool
    • 3
  • T. Phatrapornnant
    • 4
  • Y. Koike
    • 5
  • P. Rakprayoon
    • 2
  1. 1.TAIST Tokyo Tech, ICTES Program, Electrical EngineeringKasetsart UniversityBangkokThailand
  2. 2.Kasetsart Signal and Image Processing Laboratory, Electrical EngineeringKasetsart UniversityBangkokThailand
  3. 3.Chest Disease InstituteNonthaburiThailand
  4. 4.National Electronics and Computer Technology Center (NECTEC)BangkokThailand
  5. 5.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations