Skip to main content

Evaporation Modeling for Polydisperse Spray in Turbulent Flow

  • Conference paper
  • First Online:
Book cover Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Part of the book series: ERCOFTAC Series ((ERCO,volume 19))

Abstract

Based on an overview of existing vaporization models, a suggestion for capturing phase transition in a turbulent two phase flow is made. Focus is put on the Uniform Temperature Model (UTM). Comparison between equilibrium and non-equilibrium evaporation models to experimental data is highlighted. Two configurations with different fuels, i.e. different thermodynamic properties, are investigated and the results of both models are validated with the measurements. The configurations exhibit completely different boundary conditions and polydisperse turbulent multiphase flows with different classes and probability distribution of the droplet diameters. Large eddy simulation (LES) and Reynolds averaged numerical simulation (here RANS) models are used to capture the turbulence. In both configurations, results show that non-equilibrium effects influence the vaporization significantly. The UTM with the extension of non-equilibrium, by Langmuir and Knudsen, capture the vaporization well, whereas the equilibrium model over-predicts the volume flux of the liquid phase, i.e. the vaporization process is developing slower in case of equilibrium model. Worth to notice that the mean droplet diameter is between 20 and 40 µm. Thus the ratio of surface to volume is important if compared to larger droplets. Non-equilibrium effects are then correspondingly important and the equilibrium model is not able to describe the phase transition process well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellan J., Harstad K., 1987: Analysis of the convective evaporation of nondilute clusters of drops. Int. J. Heat Mass Transfer 30 (1),125–136.

    Google Scholar 

  2. Bellan J. and Selle L. C.: “Large Eddy Simulation composition equations for single-phase and two-phase fully multicomponent flows” Proceedings of the Combustion Institute Volume 32, Issue 2, Pages 2239–2246, 2009.

    Google Scholar 

  3. Berlemont A., Grancher M. S., Gouesbet G.: On the Lagrangian simulation of turbulence influence on droplet evaporation. Int. J. Heat Mass Transfer 34 (11) 2805–2812, 1991.

    Google Scholar 

  4. Berlemont A., Grancher M. S. and Gouesbet G.: Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach. J. of. Heat and Mass Transfer Vol.38 (1995) 3023–3034.

    Google Scholar 

  5. Bini M. and Jones W. P., Large-eddy simulation of particle-laden turbulent flows, J. Fluid Mech. vol. 614, 2008, pp. 207–252.

    Google Scholar 

  6. Bini M., Jones W. P. “Large Eddy Simulation of an evaporating acetone spray” International Journal of Heat and Fluid Flow, Volume 30, Issue 3, pp. 471–480, 2009.

    Google Scholar 

  7. Burger M., Schmehl R., Prommersberger K., Sch€afer O., Koch R., Wittig S.: “Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures” International Journal of Heat and Mass Transfer 46 4403–4412, (2003).

    Google Scholar 

  8. Chrigui M. and Sadiki A.: “Effects of Turbulence Modulation on Mass and Heat Transfer: 3D-Numrical Prediction Based on Coupled Advanced Models for Turbulence and Evaporation” 4th Int. Symp. On Turbulence, Heat and Mass Transfer, October 12–17, Antalya, Turkey.

    Google Scholar 

  9. Chrigui, M., Ahmadi G., Sadiki A., “Study on Interaction in Spray between Evaporating Droplets and Turbulence Using Second Order Turbulence RANS Models and a Lagrangian Approach”, Progress in Computational Fluid Dynamics, Special issue, 2004.

    Google Scholar 

  10. Dianat M., Yang Z. and McGuirk J. J. Large-Eddy Simulation of a Two-Phase Plane Mixing-Layer, Advances in Turbulence XII, Springer Proceedings in Physics, 2009, Volume 132, Part 11, 2009, 775–778.

    Google Scholar 

  11. Faeth G. M.: Evaporation and combustion of sprays: Progress in energy and combustion science, Pergamon Press, 9:1–76, 1983.

    Google Scholar 

  12. Gökalp I., Chauveau C., Simon O., Chesneau X., “Mass transfer from Liquid fuel droplets in turbulent flow”, The combustion Institute 1992.

    Google Scholar 

  13. Hallett W. L. H.: “A simple model for the vaporization of droplets with large numbers of components”, Combustion and Flame 121, 334–344, 2000.

    Google Scholar 

  14. Kohnen, G., Rüger M. and Sommerfeld M. “Convergence behavior for numerical calculations by the EULER/LAGRANGE Method for strongly coupled phases.” FED-Vol 185, Numerical Methods in Multiphases Flows ASME 1994.

    Google Scholar 

  15. Law C. K.: Unsteady droplet vaporization with droplet heating. Combustion and Flame, 26: 17–22, 1976.

    Google Scholar 

  16. Lederlin T. and Pitsch H.: “Large-eddy simulation of an evaporating and reacting spray” Center for Turbulence Research Annual Research Briefs, 2008.

    Google Scholar 

  17. Maqua C., Castanet G., Lemoine F.: “Bicomponent droplets evaporation: Temperature measurements and modelling” Fuel, Volume 87, Issues 13–14, pp. 2932–2942, 2008.

    Google Scholar 

  18. Masri A. R. and Gounder J. D. Proc. of the 6th Mediterranean Com. Symp, 2009.

    Google Scholar 

  19. Miller R. S., Harstad K., Bellan J.: Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas liquid flow simulation, Int. J. of Multiphase flow, 24, pp. 1025–1055, 1998.

    Google Scholar 

  20. Oefelein J. C., Aggarwal S. K.: Toward a unified high pressure drop model for spray simulation, center for turbulence research, Proceedings of summer program 2000, pp. 193–205.

    Google Scholar 

  21. Pera C., Réveillon J., Vervisch L., Domingo P. “Modeling subgrid scale mixture fraction variance in LES of evaporating spray Combustion and Flame”, Volume 146, Issue 4, pp. 635–648, 2006.

    Google Scholar 

  22. Prommersberger K., Maier G., and Wittig S. (1998). Validation and Application of a Droplet Evaporation Model for Real Aviation Fuel, Proceedings of NATO-RTO Meeting on Gas Turbine Engine Combustion, Emissions and Alternative Fuels, Lisbon, Portugal, 12–16 October.

    Google Scholar 

  23. Prommersberger K., Stengele J., Dullenkopf K., Himmelsbach J. and Wittig S. “Investigations of droplet evaporation at elevated pressures” Collaborative Research Center 167, September 1998 Karlsruhe, Germany.

    Google Scholar 

  24. Sanjosé M., Lederlin T., Gicquel L., Cuenot B., Pitsch H., García-Rosa N., Lecourt R. and Poinsot T.: “LES of two-phase reacting flows”, Center for Turbulence Research Proceedings of the Summer Program, 2008.

    Google Scholar 

  25. Selle L. C. and Bellan J.: “Characteristics of transitional multicomponent gaseous and drop-laden mixing layers from Direct Numerical Simulation: Composition effects”, Physics of Fluids, 19, 063301-1-33, 2007.

    Google Scholar 

  26. Senoner J. M., Sanjosé M., Lederlin T., Jaegle F., García M., Riber E., Cuenot B., Gicquel L., Pitsch H., Poinsot T. “Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow” Comptes Rendus Mécanique, 2009.

    Google Scholar 

  27. Shotorban B., Zhang K. K. Q., Mashayek F. Improvement of particle concentration prediction in large-eddy simulation by defiltering, International Journal of Heat and Mass Transfer, Volume 50, Issues 19–20, 2007, Pages 3728–3739.

    Google Scholar 

  28. Sirignano W. A. “Fluid dynamics of sprays” 1992 Freeman Scholar Lecture J. Fluids Engng. Vol. 115, pp. 345–378. 1993.

    Google Scholar 

  29. Sirignano W. A., Wu G. “Multicomponent-liquid–fuel vaporization with complex configuration”, International Journal of Heat and Mass Transfer, Volume 51, Issues 19–20, pp. 4759–4774, 2008.

    Google Scholar 

  30. Sornek, R. J., Dobashi R., Hirano T., “Effect of Turbulence on Vaporization, Mixing, and Combustion of Liquid-fuel Sprays”, Combustion and Flame 120:479–491, 2000.

    Google Scholar 

  31. Stårner S. H., Gounder J., and Masri A. R., Com. & Flame, Vol. 143, pp. 420–432, Dec. 2005.

    Google Scholar 

  32. Zugasti M. A., Rosner D. E. “Multicomponent fuel droplet vaporization and combustion using spectral theory for a continuous mixture” Combustion and Flame, Volume 135, Issue 3, Pages 271–284, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldi Chrigui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chrigui, M., Sacomano, F., Sadiki, A., Masri, A. (2014). Evaporation Modeling for Polydisperse Spray in Turbulent Flow. In: Merci, B., Gutheil, E. (eds) Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays. ERCOFTAC Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-04678-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04678-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04677-8

  • Online ISBN: 978-3-319-04678-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics