Skip to main content

Stability of Left-Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups

  • Conference paper
  • First Online:
Geometry and its Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 72))

  • 1144 Accesses

Abstract

We consider the problem of stability or instability of unit vector fields on three-dimensional Lie groups with left-invariant metric which have totally geodesic image in the unit tangent bundle with the Sasaki metric with respect to classical variations of volume. We prove that among non-flat groups only SO(3) of constant curvature + 1 admits stable totally geodesic submanifolds of this kind. Restricting the variations to left-invariant (i.e., equidistant) ones, we give a complete list of groups which admit stable/unstable unit vector fields with totally geodesic image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borisenko A. and Yampolsky A., Riemannian geometry of bundles, Russian Math. Surveys, (1991), 46(6), 55–106.

    Article  MATH  MathSciNet  Google Scholar 

  2. Boeckx E. and Vanhecke L., Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51 (2001), 523–544.

    Article  MATH  MathSciNet  Google Scholar 

  3. Boeckx E. and Vanhecke L., Harmonic and minimal radial vector fields, Acta Math. Hungar. 90 (2001), 317–331.

    Article  MATH  MathSciNet  Google Scholar 

  4. Boeckx E. and Vanhecke L., Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77–93.

    Article  MATH  MathSciNet  Google Scholar 

  5. Boeckx E. and Vanhecke L., Isoparametric functions and harmonic and minimal unit vector fields, Contemp. Math. 288 (2001), 20–31.

    Article  MathSciNet  Google Scholar 

  6. Borisenko A. and Yampolsky A. The Sectional curvature of Sasaki metric of the \(T_{1}{M}^{n}\). Ukr. geom. sbornik, 30, (1987), 10–17 (Engl. transl.: Journ. Sov. Math., (1990), 51(5), 2503–2508.

    Google Scholar 

  7. Dombrowski P.,On the geometry of the tangent bundle, J. Reine Angew. Mathematik, 210 (1962), 73–88.

    Google Scholar 

  8. Gil-Medrano O., González-Dávila J.C. and Vanhecke L., Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math. 27 (2001), 377–409.

    MATH  MathSciNet  Google Scholar 

  9. Gil-Medrano O., Relationship between volume and energy of unit vector fields, Diff. Geom. Appl. 15 (2001), 137–152.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gil-Medrano O., Llinares-Fuster E., Minimal unit vector fields, Tôhoku Math. J., 54 (2002), 71–84.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gil-Medrano O., Llinares-Fuster E., Second variation of volume and energy of vector fields. Stability of Hopf vector fields, Math. Ann. 320 (2001), 531–545.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gluck H. and Ziller W., On the volume of a unit vector field on the tree sphere, Comment. Math. Helv. 61 (1986), 177–192.

    Article  MATH  MathSciNet  Google Scholar 

  13. González-Dávila J.C. and Vanhecke L., Examples of minimal unit vector fields, Ann Glob. Anal. Geom. 18 (2000), 385–404.

    Article  MATH  Google Scholar 

  14. González-Dávila J.C. and Vanhecke L., Energy and volume of unit vector fields on three-dimensional Riemannian manifolds, Diff. Geom. Appl. 16 (2002), 225–244.

    Article  MATH  Google Scholar 

  15. Milnor J., Curvatures of left invariant metrics on Lie groups, Adv. in Math, 21 (1976), 293–329.

    Article  MATH  MathSciNet  Google Scholar 

  16. Simons J., Minimal Varieties in Riemannian Manifolds, Annals of Math. Second Series 88/1 (Jul., 1968), 62–105.

    Google Scholar 

  17. Tsukada K. and Vanhecke L., Invariant minimal unit vector fields on Lie groups, Period. Math. Hungar. 40 (2000), 123–133.

    Article  MATH  MathSciNet  Google Scholar 

  18. Yampolsky A., Totally geodesic property of Hopf vector field, Acta Math. Hungar. 101/1-2 (2003), 93–112.

    Google Scholar 

  19. Yampolsky A., Full description of totally geodesic unit vector field on Riemannian 2-manifold, J. of Math. Physics, Analysys, Geometry 1/3 2004, 355–365.

    Google Scholar 

  20. Yampolsky A., On special types of minimal and totally geodesic unit vector fields, Proceedings of the Seventh International Conference in Geometry, Integrability and Quantization June 2–10, 2005, Varna, Bulgaria, 292–306.

    Google Scholar 

  21. Yampolsky A., Invariant totally geodesic unit vector fields on three-dimensional Lie groups, J. of Math. Physics, Analysys, Geometry 3/2 (2007), 253–276.

    Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Vladimir Rovenski (Haifa University, Israel) for hospitality during the 2-nd International Workshop on Geometry and Symbolic Computations (Haifa, May 15–20, 2013) and the MAPLE developers for the perfect tool in complicated calculations. The author also thanks Ye. Petrov (Kharkiv National University) for careful reading of preliminary version and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yampolsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yampolsky, A. (2014). Stability of Left-Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups. In: Rovenski, V., Walczak, P. (eds) Geometry and its Applications. Springer Proceedings in Mathematics & Statistics, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-319-04675-4_8

Download citation

Publish with us

Policies and ethics