Advertisement

On Generalized Planar Skyline and Convex Hull Range Queries

  • Nadeem Moidu
  • Jatin Agarwal
  • Sankalp Khare
  • Kishore Kothapalli
  • Kannan Srinathan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

We present output sensitive techniques for the generalized reporting versions of the planar range maxima problem and the planar range convex hull problem. Our solutions are in the pointer machine model, for orthogonal range queries on a static point set. We solve the planar range maxima problem for two-sided, three-sided and four-sided queries. We achieve a query time of O(logn + c) using O(n) space for the two-sided case, where n denotes the number of stored points and c the number of colors reported. For the three-sided case, we achieve query time O(log2 n + clogn) using O(n) space while for four-sided queries we answer queries in O(log3 n + clog2 n) using O(nlogn) space. For the planar range convex hull problem, we provide a solution that answers queries in O(log2 n + clogn) time, using O(nlog2 n) space.

Keywords

Convex Hull Range Query Query Time Maximal Chain Distinct Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.M.: Range searching in categorical data: Colored range searching on grid. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: FOCS, pp. 198–207. IEEE Computer Society (2000)Google Scholar
  3. 3.
    Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.K.: New upper bounds for generalized intersection searching problems. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 464–474. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Brass, P., Knauer, C., Shin, C.S., Smid, M., Vigan, I.: Range-aggregate queries for geometric extent problems. In: CATS: 19th Computing: Australasian Theory Symposium (2013)Google Scholar
  5. 5.
    Brodal, G.S., Tsakalidis, K.: Dynamic planar range maxima queries. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 256–267. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and document retrieval. Theor. Comput. Sci. 483, 36–50 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gupta, P., Janardan, R., Smid, M.: Computational geometry: Generalized intersection searching. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Structures and Applications, Chapman & Hall/CRC, Boca Raton, FL, pp. 1–17. CRC Press (2005)Google Scholar
  9. 9.
    Gupta, P., Janardan, R., Smid, M.H.M.: Efficient algorithms for generalized intersection searching on non-iso-oriented objects. In: Symposium on Computational Geometry, pp. 369–378 (1994)Google Scholar
  10. 10.
    Gupta, P., Janardan, R., Smid, M.H.M.: Algorithms for generalized halfspace range searching and other intersection searching problems. Comput. Geom. 5, 321–340 (1995)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gupta, P., Janardan, R., Smid, M.H.M.: Further results on generalized intersection searching problems: Counting, reporting, and dynamization. J. Algorithms 19(2), 282–317 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gupta, P., Janardan, R., Smid, M.H.M.: Algorithms for generalized halfspace range searching and other intersection searching problems. Comput. Geom. 6, 1–19 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gupta, P., Janardan, R., Smid, M.H.M.: A technique for adding range restrictions to generalized searching problems. Inf. Process. Lett. 64(5), 263–269 (1997)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Janardan, R., Lopez, M.A.: Generalized intersection searching problems. Int. J. Comput. Geometry Appl. 3(1), 39–69 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kalavagattu, A.K., Agarwal, J., Das, A.S., Kothapalli, K.: On counting range maxima points in plane. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 263–273. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Kirkpatrick, D., Snoeyink, J.: Computing common tangents without a separating line. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 183–193. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Moidu, N., Agarwal, J., Kothapalli, K.: Planar convex hull range query and related problems. In: CCCG, Carleton University, Ottawa, Canada (2013)Google Scholar
  19. 19.
    O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998), http://cs.smith.edu/~orourke/books/compgeom.html
  20. 20.
    Rahul, S., Bellam, H., Gupta, P., Rajan, K.: Range aggregate structures for colored geometric objects. In: CCCG. pp. 249–252 (2010)Google Scholar
  21. 21.
    Rahul, S., Janardan, R.: Algorithms for range-skyline queries. In: Cruz, I.F., Knoblock, C.A., Kröger, P., Tanin, E., Widmayer, P. (eds.) SIGSPATIAL/GIS, pp. 526–529. ACM (2012)Google Scholar
  22. 22.
    Shi, Q., JáJá, J.: Optimal and near-optimal algorithms for generalized intersection reporting on pointer machines. Inf. Process. Lett. 95(3), 382–388 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: STOC, pp. 114–122. ACM (1981)Google Scholar
  24. 24.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4), 690–715 (1979)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nadeem Moidu
    • 1
  • Jatin Agarwal
    • 1
  • Sankalp Khare
    • 1
  • Kishore Kothapalli
    • 1
  • Kannan Srinathan
    • 1
  1. 1.Center for Security, Theory and Algorithmic Research (CSTAR)IIIT HyderabadIndia

Personalised recommendations