Generalized Class Cover Problem with Axis-Parallel Strips

  • Apurva Mudgal
  • Supantha Pandit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)


We initiate the study of a generalization of the class cover problem [1,2], the generalized class cover problem, where we are allowed to misclassify some points provided we pay an associated positive penalty for every misclassified point. We study five different variants of generalized class cover problem with axis-parallel strips and half-strips in the plane, thus extending similar work by Bereg et al. [2] on the class cover problem. For each of these variants, we either show that they are in P, or prove that they are NP-complete and give constant factor approximation algorithms.


class cover problem axis-parallel strips approximation algorithms geometric set cover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cannon, A.H., Cowen, L.J.: Approximation algorithms for the class cover problem. Annals of Mathematics and Artificial Intelligence 40(3-4), 215–223 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bereg, S., Cabello, S., Díaz-Báñez, J.M., Pérez-Lantero, P., Seara, C., Ventura, I.: The class cover problem with boxes. Computational Geometry 45(7), 294–304 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete & Computational Geometry 14(1), 463–479 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Matoušek, J., Seidel, R., Welzl, E.: How to net a lot with little: small ε-nets for disks and halfspaces. In: Proc. of the 6th Annual Symposium on Computational Geometry, SCG 1990, pp. 16–22. ACM (1990)Google Scholar
  5. 5.
    Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete & Computational Geometry 37(1), 43–58 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete & Computational Geometry 44(4), 883–895 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Aschner, R., Katz, M.J., Morgenstern, G., Yuditsky, Y.: Approximation schemes for covering and packing. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 89–100. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: Breaking the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 243–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover problem. In: Proc. of 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 345–353 (2000)Google Scholar
  10. 10.
    Chan, T.M., Hu, N.: Geometric red-blue set cover for unit squares and related problems. In: Proceedings of the 25th Canadian Conference on Computational Geometry, CCCG 2013, pp. 289–293 (2013)Google Scholar
  11. 11.
    Chin, F.Y.L., Ting, H.-F., Zhang, Y.: Variable-size rectangle covering. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 145–154. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming The State of the Art, pp. 235–257. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  13. 13.
    Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, Atlanta, Georgia, USA, October 25-27, pp. 671–680 (2009)Google Scholar
  14. 14.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory, Series B 80(2), 346–355 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Delong, A., Veksler, O., Osokin, A., Boykov, Y.: Minimizing sparse high-order energies by submodular vertex-cover. Advances in Neural Information Processing Systems 25, 971–979 (2012)Google Scholar
  16. 16.
    Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial problems with multi-agent submodular cost functions. In: FOCS 2009: Proceedings of 50th Annual IEEE Symposium on Foundations of Computer Science (2009)Google Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  18. 18.
    Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. Journal of Algorithms 43(1), 138–152 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1576–1585 (2012)Google Scholar
  20. 20.
    Bienstock, D., Goemans, M., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Mathematical Programming 59(1-3), 413–420 (1993)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Apurva Mudgal
    • 1
  • Supantha Pandit
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations