WALCOM 2014: Algorithms and Computation pp 310-321

# On Minimum Average Stretch Spanning Trees in Polygonal 2-Trees

• N. S. Narayanaswamy
• G. Ramakrishna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

## Abstract

A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. We consider the problem of computing a minimum average stretch spanning tree in polygonal 2-trees, a super class of 2-connected outerplanar graphs. For a polygonal 2-tree on n vertices, we present an algorithm to compute a minimum average stretch spanning tree in O(n logn) time. This also finds a minimum fundamental cycle basis in polygonal 2-trees.

## Keywords

Outerplanar Graph External Edge Fundamental Cycle Unweighted Graph Average Stretch
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the k-server problem. SIAM J. of Comput. 24, 78–100 (1995)
2. 2.
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)
3. 3.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
4. 4.
Deo, N., Prabhu, G., Krishnamoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Transactions on Math. Software 8, 26–42 (1982)
5. 5.
Diestel, R.: Graph Theory, 4th edn. Springer (2010)Google Scholar
6. 6.
Ducharme, M., Labelle, G., Lamathe, C., Leroux, P.: A classification of outerplanar k-gonal 2-trees. In: 19th Intern. Conf. on FPSAC (2007) (appeared as Poster.)Google Scholar
7. 7.
Emek, Y.: k-outerplanar graphs, planar duality, and low stretch spanning trees. Algorithmica 61(1), 141–160 (2011)
8. 8.
Emek, Y., Peleg, D.: A tight upper bound on the probabilistic embedding of series-parallel graphs. SIAM J. Discrete Math. 23(4), 1827–1841 (2009)
9. 9.
Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1), 41–55 (1992)
10. 10.
Fowler, T., Gessel, I., Labelle, G., Leroux, P.: The specification of 2-trees. Advances in Applied Mathematics 28(2), 145–168 (2002)
11. 11.
Galbiati, G., Rizzi, R., Amaldi, E.: On the approximability of the minimum strictly fundamental cycle basis problem. Discrete Appl. Math. 159(4), 187–200 (2011)
12. 12.
Hubicka, E., Syso, M.: Minimal bases of cycles of a graph. In: Recent Advances in Graph Theory, Second Czech Symposium in Graph Theory, pp. 283–293. Academia, Prague (1975)Google Scholar
13. 13.
Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., Zweig, K.A.: Cycle bases in graphs characterization, algorithms, complexity, and applications. Computer Science Review 3(4), 199–243 (2009)
14. 14.
Koh, K.M., Teo, C.P.: Chromaticity of series-parallel graphs. Discrete Mathematics 154(1-3), 289–295 (1996)
15. 15.
Labelle, G., Lamathe, C., Leroux, P.: Labelled and unlabelled enumeration of k-gonal 2-trees. J. Comb. Theory, Ser. A 106(2), 193–219 (2004)
16. 16.
Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discrete Appl. Math. 156, 569–587 (2008)
17. 17.
Omoomi, B., Peng, Y.-H.: Chromatic equivalence classes of certain generalized polygon trees, iii. Discrete Mathematics 271(1-3), 223–234 (2003)
18. 18.
Peng, Y.-H., Little, C.H.C., Teo, K.L., Wang, H.: Chromatic equivalence classes of certain generalized polygon trees. Discrete Mathematics 172(1-3), 103–114 (1997)
19. 19.
Ramachandran, V.: Parallel Open Ear Decomposition with Applications to Graph Biconnectivity and Triconnectivity. Morgan Kaufmann (1992)Google Scholar
20. 20.
West, D.B.: Introduction to graph theory, 2nd edn. Prentice-Hall (2001)Google Scholar

© Springer International Publishing Switzerland 2014

## Authors and Affiliations

• N. S. Narayanaswamy
• 1
• G. Ramakrishna
• 1
1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasIndia

## Personalised recommendations

### Citepaper 