Advertisement

Quasi-Upward Planar Drawings of Mixed Graphs with Few Bends: Heuristics and Exact Methods

  • Carla Binucci
  • Walter Didimo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

A mixed graph has both directed and undirected edges. We study how to compute a crossing-free drawing of a planar embedded mixed graph, such that it is upward “as much as possible”. Roughly speaking, in an upward drawing of a mixed graph all edges are monotone in the vertical direction and directed edges flow monotonically from bottom to top according to their orientation. We study quasi-upward drawings of mixed graphs, that is, upward drawings where edges can break the vertical monotonicity in a finite number of edge points, called bends. We describe both efficient heuristics and exact methods for computing quasi-upward planar drawings of planar embedded mixed graphs with few bends, and we extensively compare them experimentally: the results show the effectiveness of our algorithms in many cases.

Keywords

Integer Linear Programming Directed Edge Undirected Edge Integer Linear Programming Model Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A.: Classification of planar upward embedding. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 415–426. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K.: The duals of upward planar graphs on cylinders. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 103–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer (2009)Google Scholar
  4. 4.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 6(12), 476–497 (1994)CrossRefGoogle Scholar
  6. 6.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. on Computing 27, 132–169 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Binucci, C., Di Giacomo, E., Didimo, W., Rextin, A.: Switch-regular upward planar embeddings of directed trees. J. of Graph Algorithms and Applications 15(5), 587–629 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Binucci, C., Didimo, W.: Upward planarity testing of embedded mixed graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 427–432. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Binucci, C., Didimo, W., Giordano, F.: Maximum upward planar subgraphs of embedded planar digraphs. Computational Geometry: Theory and Applications 41(3), 230–246 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Binucci, C., Didimo, W., Patrignani, M.: Upward and quasi-upward planarity testing of embedded mixed graphs. Technical report, RT-001-12, DIEI - University of Perugia (2012)Google Scholar
  11. 11.
    Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. American Mathematical Monthly 87(9), 716–719 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Layer-free upward crossing minimization. ACM J. of Experimental Algorithmics 15 (2010)Google Scholar
  14. 14.
    Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Upward planarization layout. J. of Graph Algorithms and Applications 15(1), 127–155 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chimani, M., Zeranski, R.: Upward planarity testing via SAT. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Chimani, M., Zeranski, R.: Upward planarity testing: A computational study. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. of Graph Algorithms and Applications 16(3), 635–650 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Di Battista, G., Didimo, W.: Gdtoolkit. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Chapman and Hall/CRC (2013)Google Scholar
  19. 19.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  20. 20.
    Didimo, W.: Upward planar drawings and switch-regularity heuristics. J. of Graph Algorithms and Applications 10(2), 259–285 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. on Discrete Mathematics 23(4), 1842–1899 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Didimo, W., Pizzonia, M.: Upward embeddings and orientations of undirected planar graphs. J. of Graph Algorithms and Applications 7(2), 221–241 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Eades, P., Lin, X., Smyth, W.F.: A fast effective heuristic for the feedback arc set problem. Information Processing Letters 47, 319–323 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Eiglsperger, M., Eppinger, F., Kaufmann, M.: An approach for mixed upward planarization. J. of Graph Algorithms and Applications 7(2), 203–220 (2003)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Farzad, B., Mahdian, M., Mahmoudian, E., Saberi, A., Sadri, B.: Forced orientation of graphs. Bulletin of Iranian Mathematical Society 32(1), 78–89 (2006)Google Scholar
  26. 26.
    Frati, F., Kaufmann, M., Pach, J., Tóth, C.D., Wood, D.R.: On the upward planarity of mixed plane graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 1–12. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co. (1979)Google Scholar
  28. 28.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. on Computing 31(2), 601–625 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Healy, P., Lynch, K.: Fixed-parameter tractable algorithms for testing upward planarity. International Journal of Foundations of Computer Science 17(5), 1095–1114 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. on Computing 25(2), 291–311 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lucchesi, C.L., Younger, D.H.: A minimax theorem for directed graphs. J. London Math. Soc. 17, 369–374 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Mchedlidze, T., Symvonis, A.: Unilateral orientation of mixed graphs. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 588–599. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  34. 34.
    Stamm, H.: On feedback problems in planar digraphs. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 79–89. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carla Binucci
    • 1
  • Walter Didimo
    • 1
  1. 1.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di PerugiaItaly

Personalised recommendations