Skip to main content

Collapsing Exact Arithmetic Hierarchies

  • Conference paper
Algorithms and Computation (WALCOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8344))

Included in the following conference series:

  • 1038 Accesses

Abstract

We provide a uniform framework for proving the collapse of the hierarchy \({\sf NC}^1(\mathcal{C})\) for an exact arithmetic class \(\mathcal{C}\) of polynomial degree. These hierarchies collapse all the way down to the third level of the AC 0-hierarchy, \({\sf AC^0_3}(\mathcal{C})\). Our main collapsing exhibits are the classes

$$\mathcal{C} \in \{{\sf C}_={{\sf NC}^1}, {\sf C}_={\sf L}, {\sf C}_={\sf SAC^1}, {\sf C}_={\sf P}\}.$$

NC 1(C = L) and NC 1(C = P) are already known to collapse [1,19,20].

We reiterate that our contribution is a framework that works for all these hierarchies. Our proof generalizes a proof from [9] where it is used to prove the collapse of the AC 0(C = NC 1) hierarchy. It is essentially based on a polynomial degree characterization of each of the base classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: depth reduction and size lower bounds. Theoretical Computer Science 209(1), 47–86 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balaji, N., Datta, S.: Collapsing exact arithmetic hierarchies. Electronic Colloquium on Computational Complexity (ECCC) 20, 131 (2013)

    Google Scholar 

  4. Beigel, R., Reingold, N., Spielman, D.A.: PP is closed under intersection. Journal of Computer and System Sciences 50(2), 191–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beigel, R., Fu, B.: Circuits over pp and pl. J. Comput. Syst. Sci. 60(2), 422–441 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. SIAM Journal on Computing 21, 54–58 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC 1 computation. Journal of Computer and System Sciences 57, 200–212 (1998), Preliminary Version in Proceedings of the 11th IEEE Conference on Computational Complexity, 12–21 (1996)

    Google Scholar 

  8. Cook, S.: A taxonomy of problems with fast parallel algorithms. Information and Control 64, 2–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Datta, S., Mahajan, M., Rao, B.V.R., Thomas, M., Vollmer, H.: Counting classes and the fine structure between NC1 and L. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 306–317. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Fenner, S.A., Fortnow, L.J., Kurtz, S.A.: Gap-definable counting classes. Journal of Computer and System Sciences 48(1), 116–148 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gill, J.: Computational complexity of probabilistic turing machines. SIAM Journal on Computing 6(4), 675–695 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gottlob, G.: Collapsing oracle-tape hierarchies. In: IEEE Conference on Computational Complexity, pp. 33–42 (1996)

    Google Scholar 

  13. Hemachandra, L.: The strong exponential hierarchy collapses. In: Structure in Complexity Theory Conference. IEEE Computer Society (1987)

    Google Scholar 

  14. Hoang, T.M., Thierauf, T.: The complexity of the characteristic and the minimal polynomial. Theor. Comput. Sci. 295, 205–222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal on Computing 17(5), 935–938 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC1 and L. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 477–488. Springer, Heidelberg (2007)

    Google Scholar 

  17. Mengel, S.: Conjunctive Queries, Arithmetic Circuits and Counting Complexity. Ph.D. thesis, Universität Paderborn (2012)

    Google Scholar 

  18. Ogihara, M.: The PL hierarchy collapses. SIAM J. Comput. 27(5), 1430–1437 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ogihara, M.: Equivalence of NC k and AC k − 1 closures of NP and Other Classes. Inf. Comput. 120(1), 55–58 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ogiwara, M.: Generalized theorems on relationships among reducibility notions to certain complexity classes. Mathematical Systems Theory 27(3), 189–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Santha, M., Tan, S.: Verifying the determinant in parallel. Computational Complexity 7(2), 128–151 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schöning, U., Wagner, K.W.: Collapsing oracle hierarchies, census functions and logarithmically many queries. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 91–97. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  23. Simon, J.: On some central problems in computational complexity (1975)

    Google Scholar 

  24. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Toda, S.: Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Transactions on Information and Systems E75-D, 116–124 (1992)

    Google Scholar 

  26. Venkateswaran, H.: Properties that characterize LogCFL. Journal of Computer and System Sciences 42, 380–404 (1991)

    Article  MathSciNet  Google Scholar 

  27. Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM J. on Computing 21, 655–670 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proceedings of 6th Structure in Complexity Theory Conference, pp. 270–284 (1991)

    Google Scholar 

  29. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York Inc. (1999)

    Google Scholar 

  30. Wilson, C.B.: Relativized circuit complexity. J. Comput. Syst. Sci. 31(2), 169–181 (1985)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Balaji, N., Datta, S. (2014). Collapsing Exact Arithmetic Hierarchies. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04657-0_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04656-3

  • Online ISBN: 978-3-319-04657-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics