Advertisement

Editing the Simplest Graphs

  • Peter Damaschke
  • Olof Mogren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

We study the complexity of editing a graph into a target graph with any fixed critical-clique graph. The problem came up in practice, in mining a huge word similarity graph for well structured word clusters. It also adds to the rich field of graph modification problems. We show in a generic way that several variants of this problem are in SUBEPT. As a special case, we give a tight time bound for edge deletion to obtain a single clique and isolated vertices, and we round up this study with NP-completeness results for a number of target graphs.

Keywords

Vertex Cover Input Graph Edge Deletion Complete Multipartite Graph Clique Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burzyn, P., Bonomo, F., Durán, G.: NP-completeness Results for Edge Modification Problems. Discr. Appl. Math. 154, 1824–1844 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties. Inf. Proc. Lett. 58, 171–176 (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, J., Kanj, I.A., Xia, G.: Improved Upper Bounds for Vertex Cover. Theor. Comp. Sci. 411, 3736–3756 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Dickson, L.E.: Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors. Am. J. Math. 35, 413–422 (1913)CrossRefzbMATHGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  6. 6.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-Based Data Clustering with Overlaps. Discr. Optim. 8, 2–17 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight Bounds for Parameterized Complexity of Cluster Editing. In: Portier, N., Wilke, T. (eds.) STACS 2013, Dagstuhl. LIPIcs, vol. 20, pp. 32–43 (2013)Google Scholar
  8. 8.
    Guo, J.: A More Effective Linear Kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Vertex Cover Variants. Theory Comput. Syst. 41, 501–520 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity Classification of some Edge Modification Problems. Discr. Appl. Math. 113, 109–128 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Peeters, R.: The Maximum Edge Biclique Problem is NP-complete. Discr. Appl. Math. 131, 651–654 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math. and its Appl. Oxford Univ. Press (2006)Google Scholar
  13. 13.
    Shamir, R., Sharan, R., Tsur, D.: Cluster Graph Modification Problems. Discr. Appl. Math. 144, 173–182 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Damaschke
    • 1
  • Olof Mogren
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers UniversityGöteborgSweden

Personalised recommendations