Advertisement

On Some \(\mathcal{NP}\)-complete SEFE Problems

  • Patrizio Angelini
  • Giordano Da Lozzo
  • Daniel Neuwirth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

We investigate the complexity of some problems related to the Simultaneous Embedding with Fixed Edges (SEFE) problem which, given k planar graphs G 1,…,G k on the same set of vertices, asks whether they can be simultaneously embedded so that the embedding of each graph be planar and common edges be drawn the same. While the computational complexity of SEFE with k = 2 is a central open question in Graph Drawing, the problem is \(\mathcal{NP}\)-complete for k ≥ 3 [Gassner et al., WG ’06], even if the intersection graph is the same for each pair of graphs (sunflower intersection) [Schaefer, JGAA (2013)].

We improve on these results by proving that SEFE with k ≥ 3 and sunflower intersection is \(\mathcal{NP}\)-complete even when (i) the intersection graph is connected and (ii) two of the three input graphs are biconnected. This result implies that the Partitioned T-Coherent k-Page Book-Embedding is \(\mathcal{NP}\)-complete with k ≥ 3, which was only known for k unbounded [Hoske, Bachelor Thesis (2012)]. Further, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is \(\mathcal{NP}\)-complete (optimization of SEFE, Open Problem 9, Chapter 11 of the Handbook of Graph Drawing and Visualization).

Keywords

Planar Graph Intersection Graph Input Graph Terminal Vertex Star Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: Beyond clustered planarity. CoRR abs/1207.3934 (2012)Google Scholar
  2. 2.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: On the complexity of some problems related to SEFE. CoRR abs/1311.3607 (2013)Google Scholar
  3. 3.
    Angelini, P., Di Battista, G., Frati, F.: Simultaneous embedding of embedded planar graphs. Int. J. on Comp. Geom. and Appl. (2013), Special Issue from Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.): ISAAC 2011. LNCS, vol. 7074. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221 (2010)Google Scholar
  5. 5.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. of Discrete Algorithms 14, 150–172 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Blasiüs, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)Google Scholar
  7. 7.
    Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 31–42. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: SODA 2013, pp. 1030–1043 (2013)Google Scholar
  9. 9.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. of Graph Alg. and App. 13(3), 349–378 (2009), Special Issue from Hong, S.-H., Nishizeki, T., Quan, W. (eds.): GD 2007. LNCS, vol. 4875. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Eades, P., Feng, Q.W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. of Graph Alg. and Appl. 9(3), 347–364 (2005)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: Layout algorithms and visualization schemes. J. of Graph Alg. and Appl. 9(1), 165–182 (2005)Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: The Rectilinear Steiner Tree Problem is NP-Complete. SIAM J. Appl. Math. 32, 826–834 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 410–421. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Hoske, D.: Book embedding with fixed page assignments. Bachelor thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany (2012)Google Scholar
  17. 17.
    Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. of Graph Alg. and Appl. 13(2), 205–218 (2009)zbMATHGoogle Scholar
  18. 18.
    Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, USA (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics 17(4), 717–728 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. J. of Graph Alg. and Appl. 17(4), 367–440 (2013)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giordano Da Lozzo
    • 1
  • Daniel Neuwirth
    • 2
  1. 1.Dipartimento di IngegneriaRoma Tre UniversityItaly
  2. 2.Universität PassauGermany

Personalised recommendations