Advertisement

Some Extensions of the Bottleneck Paths Problem

  • Tong-Wook Shinn
  • Tadao Takaoka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

We extend the well known bottleneck paths problem in two directions for directed unweighted graphs with positive real edge capacities. Firstly we narrow the problem domain and compute the bottleneck of the entire network in O(mlogn) time, where m and n are the number of edges and vertices in the graph, respectively. Secondly we enlarge the domain and compute the shortest paths for all possible bottleneck amounts. We present a combinatorial algorithm to solve the Single Source Shortest Paths for All Flows (SSSP-AF) problem in O(mn) worst case time, followed by an algorithm to solve the All Pairs Shortest Paths for All Flows (APSP-AF) problem in \(O(\sqrt{t}n^{(\omega+9)/4})\) time, where t is the number of distinct edge capacities and O(n ω ) is the time taken to multiply two n-by-n matrices over a ring. We also discuss practical applications for these new problems.

Keywords

Short Path Acceleration Phase Open Short Path First Edge Capacity Capacity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)Google Scholar
  2. 2.
    Alon, N., Galil, Z., Margalit, O.: On the Exponent of the All Pairs Shortest Path Problem. In: Proc. 32nd IEEE FOCS, pp. 569–575 (1991)Google Scholar
  3. 3.
    Bellman, R.: On a Routing Problem. Quart. Appl. Math. 16, 87–90 (1958)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dijkstra, E.: A Note on Two Problems in Connexion With Graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Duan, R., Pettie, S.: Fast Algorithms for (max,min)-matrix multiplication and bottleneck shortest paths. In: Proc. 19th SODA, pp. 384–391 (2009)Google Scholar
  6. 6.
    Ford, L.: Network Flow Theory. RAND Paper, p. 923 (1956)Google Scholar
  7. 7.
    Le Gall, F.: Faster Algorithms for Rectangular Matrix Multiplication. In: Proc. 53rd FOCS, pp. 514–523 (2012)Google Scholar
  8. 8.
    Galil, Z., Margalit, O.: All Pairs Shortest Paths for Graphs with Small Integer Length Edges. Journal of Computer and System Sciences 54, 243–254 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Robinson, S.: Toward an Optimal Algorithm for Matrix Multiplication. SIAM News 38, 9 (2005)Google Scholar
  10. 10.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation Groβer Zahlen. Computing 7, 281–292 (1971)CrossRefzbMATHGoogle Scholar
  11. 11.
    Seidel, R.: On the all-pairs-shortest-path problem. In: Proc. 24th ACM STOC, pp. 213–223 (1990)Google Scholar
  12. 12.
    Takaoka, T.: Sub-cubic Cost Algorithms for the All Pairs Shortest Path Problem. Algorithmica 20, 309–318 (1995)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Takaoka, T.: Efficient Algorithms for the 2-Center Problems. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part II. LNCS, vol. 6017, pp. 519–532. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Tarjan, R.: Depth-first search and linear graph algorithms. Jour. SIAM 1 2, 146–160 (1972)MathSciNetGoogle Scholar
  15. 15.
    Vassilevska, V., Williams, R., Yuster, R.: All Pairs Bottleneck Paths and Max-Min Matrix Products in Truly Subcubic Time. Journal of Theory of Computing 5, 173–189 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Williams, V.: Breaking the Coppersmith-Winograd barrier. In: STOC (2012)Google Scholar
  17. 17.
    Zwick, U.: All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication. Journal of the ACM 49, 289–317 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Open Networking Foundation: Software-Defined Networking: The New Norm for Networks ONF White Paper (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tong-Wook Shinn
    • 1
  • Tadao Takaoka
    • 1
  1. 1.Department of Computer Science and Software EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations