Skip to main content

On a Class of Covering Problems with Variable Capacities in Wireless Networks

  • Conference paper
Algorithms and Computation (WALCOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8344))

Included in the following conference series:

  • 1074 Accesses

Abstract

We consider the problem of allocating clients to base stations in wireless networks. Two design decisions are the location of the base stations, and the power levels of the base stations. We model the interference due to the increased power usage resulting in greater serving radius, as capacities that are non-increasing with respect to the covering radius. We consider three models. In the first model the location of the base stations and the clients are fixed, and the problem is to determine the serving radius for each base station so as to serve a set of clients with maximum total profit subject to the capacity constraints of the base stations. In the second model, each client has an associated demand in addition to its profit. A fixed number of facilities have to be opened from a candidate set of locations. The goal is to serve clients so as to maximize the profit subject to the capacity constraints. In the third model the location and the serving radius of the base stations are to be determined. There are costs associated with opening the base stations, and the goal is to open a set of base stations of minimum total cost so as to serve the entire client demand subject to the capacity constraints at the base stations. We show that for the first model the problem is NP-complete even when there are only two choices for the serving radius, and the capacities are 1, 2. For the second model we give a 1/2-ε approximation algorithm. For the third model we give a column generation procedure for solving the standard linear programming model, and a randomized rounding procedure. We establish the efficacy of the column generation based rounding scheme on randomly generated instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K.: Capacitated facility location: Separation algorithms and computational experience. Math. Program. 81, 149–175 (1998)

    MATH  MathSciNet  Google Scholar 

  2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, ch. 5, 3rd edn. Springer (2008) ISBN: 978-3-540-77973-5

    Google Scholar 

  3. Berman, O., Drezner, Z., Krass, D.: Generalized coverage: New developments in covering location models. Computers & Operations Research 37(10), 1675–1687 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Catrein, D., Imhof, L.A., Mathar, R.: Power control, capacity, and duality of uplink and downlink in cellular CDMA systems. IEEE Transactions on Communications 52(10), 1777–1785 (2004)

    Article  Google Scholar 

  5. Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capacitated facility location problems. Math. Program. 102(2), 207–222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of the approximations for maximizing submodular set functions II. Mathematical Programming Study 8, 73–87 (1978)

    Article  MathSciNet  Google Scholar 

  7. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problem. In: SODA, pp. 611–620 (2006)

    Google Scholar 

  8. Hanly, S.: Congestion measures in DS-CDMA networks. IEEE Transactions on Communications 47(3), 426–437 (1999)

    Article  Google Scholar 

  9. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Holma, H., Toskala, A.: WCDMA for UMTS: HSPA Evolution and LTE, 4th edn. Wiley (2007) ISBN: 978-0470319338

    Google Scholar 

  11. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subsets problems. J. ACM 22, 463–468 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations, Revised edn. Wiley (1990) ISBN: 978-0471924203

    Google Scholar 

  13. Mulvey, J.M., Beck, M.P.: Solving capacitated clustering problems. European Journal of Operational Research 18(3), 339–348 (1984)

    Article  MATH  Google Scholar 

  14. Radwan, A., Hassanein, H.: Capacity enhancement in CDMA cellular networks using multi-hop communication. In: Proceedings of the 11th IEEE Symposium on Computers and Communications, June 26-29, pp. 832–837. IEEE (2006)

    Google Scholar 

  15. Schrijver, A. Combinatorial Optimization, first ed., vol. A, part II. Springer, ch. 21, pp. 337–377. ISBN: 978-3540443896 (2003)

    Google Scholar 

  16. Tam, Y.H., Hassanein, H.S., Akl, S.G., Benkoczi, R.: Optimal multi-hop cellular architecture for wireless communications. In: Proceedings of the 31st IEEE Conference on Local Computer Networks, pp. 738–745 (November 2006)

    Google Scholar 

  17. Vondrak, J.: Optimal approximation for the submodular welfare problem in value oracle model. In: STOC, pp. 67–74 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Akl, S., Benkoczi, R., Gaur, D.R., Hassanein, H., Hossain, S., Thom, M. (2014). On a Class of Covering Problems with Variable Capacities in Wireless Networks. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04657-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04656-3

  • Online ISBN: 978-3-319-04657-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics