Advertisement

The \({\mathcal{G}}\)-Packing with t-Overlap Problem

  • Jazmín Romero
  • Alejandro López-Ortiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

We introduce the k-\(\mathcal{G}\)-Packing with t-Overlap problem to formalize the problem of finding communities in a network. In the k-\(\mathcal{G}\)-Packing with t-Overlap problem, we search for at least k communities with possible overlap. In contrast with previous work where communities are disjoint, we regulate the overlap through a parameter t. Our focus is the parameterized complexity of the k-\(\mathcal{G}\)-Packing with t-Overlap problem. Here, we provide a new technique for this problem generalizing the crown decomposition technique [2]. Using our global rule, we achieve a kernel with size bounded by 2(rk − r) for the k-\(\mathcal{G}\)-Packing with t-Overlap problem when t = r − 2 and \(\mathcal{G}\) is a clique of size r.

Keywords

Injective Function Overlap Problem Maximal Solution Reduction Rule Edge Disjoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balakrishman, H., Deo, N.: Detecting communities using bibliographic metrics. In: Proceedings of the IEEE International Conference on Granular Computing, pp. 293–298 (2006)Google Scholar
  2. 2.
    Chor, B., Fellows, M., Juedes, D.: Linear Kernels in Linear Time, or How to Save k Colors in O(n 2) Steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Damaschke, P.: Fixed-parameter tractable generalizations of cluster editing. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 344–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Everett, M.G., Borgatti, S.P.: Analyzing clique overlap. Connections 21, 49–61 (1998)Google Scholar
  5. 5.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 516–526. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Fellows, M., Heggernes, P., Rosamond, F., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Freeman, L.: The sociological concept of “group”: An empirical test of two models. American Journal of Sociology 98, 152–166 (1992)CrossRefGoogle Scholar
  8. 8.
    Girvan, M., Newman, M.: Community Structure in Social and Biological Networks. Proceedings of the National Academy of Science of the United States of America, 7821–7826 (2002)Google Scholar
  9. 9.
    Kirkpatrick, D., Hell, P.: On the completeness of a generalized matching problem. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC), pp. 240–245 (1978)Google Scholar
  10. 10.
    Luo, F., Wang, J., Promislow, E.: Exploring local community structures in large networks. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 233–239 (2006)Google Scholar
  11. 11.
    Mathieson, L., Prieto, E., Shaw, P.: Packing Edge Disjoint Triangles: A Parameterized View. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)CrossRefGoogle Scholar
  13. 13.
    Prieto, E.: Systematic Kernelization in FPT Algorithm Design. Ph.D. thesis, The university of Newcastle (2005)Google Scholar
  14. 14.
    Prieto, E., Sloper, C.: Looking at the Stars. Theoretical Computer Science 351(3), 437–445 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jazmín Romero
    • 1
  • Alejandro López-Ortiz
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations