Skip to main content

Transconductance Enhancement Dependence on the Channel Length of CESL-Strained nMOSFETs

  • Conference paper
  • 1529 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 293))

Abstract

Stress is distributed unequally along channels by both uniaxial and biaxial stressors. This study investigated channel-length-related performance enhancement by using contact etching stop layer (CESL) as the stressor. Devices with low tensile (L.T.) and high tensile (H.T.) stresses use CESLs with different thicknesses on nMOSFETs. Results indicate that transconductance enhances the shortest channel in H.T. devices compared with L.T. devices. The threshold voltage difference between L.T. and H.T. nMOSFETs verifies the high stress in H.T. nMOSFETs. However, this threshold voltage difference cannot verify the considerable decrease in the threshold voltage of the shortest channel of H.T. devices compared with L.T. devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Irie, H., Kita, K., Kyuno, K., & Toriumi, A. (2004). In-plane mobility anisotropy and universality under uni-axial strains in NAND p-MOS inversion layers on (100), (110) and (111) Si. In IEDM Technical Digest, pp. 225–228.

    Google Scholar 

  2. Liu, J. P., Li, K., Pandey, S. M., Benistant, F. L., See, A., Zhou, M. S., et al. (2008). Strain relaxation in transistor channels with embedded epitaxial silicon germanium source/drain. Applied Physics Letters, 93, 221912.

    Article  Google Scholar 

  3. Chang, W. T., Wang, C. C., Lin, J. A., & Yeh, W. K. (2010). External Stresses on Tensile and Compressive Contact Etching Stop Layer SOI MOSFETs. IEEE Transactions on Electronics Devices, 57, 1889–1894.

    Article  Google Scholar 

  4. Lim, J. S., Thompson, S. E., & Fossum, J. G. (2004). Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Letters, 25, 731–733.

    Article  Google Scholar 

  5. Sugii, N., Hisamoto, D., Washio, K., Yokoyama, K. N., & Kimura, S. (2002). Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate. IEEE Transactions on Electronics Devices, 49, 2237–2243.

    Article  Google Scholar 

  6. Rochettea, F., Casséa, M., Mouisb, M., Reimbolda, G., Blachiera, D., Lerouxa, C., et al. (2007). Experimental evidence and extraction of the electron mass variation in [110] uniaxially strained MOSFETs. Solid-State Electronics, 51, 1458–1465.

    Article  Google Scholar 

  7. Zhao, W., He, J., Belford, R. E., Wernersson, L. E. E., & Seabaugh, A. (2004). Partially depleted SOI MOSFETs under uniaxial tensile strain. IEEE Transactions on Electronics Devices, 51, 317–323.

    Article  Google Scholar 

  8. Yang, P., Lau, W. S., Lai, S. W., Lo, V. L., Siah, S. Y., & Chan, L. (2010). Effects of switching from ‹110› to ‹100› channel orientation and tensile stress on n-channel and p-channel metal-oxide-semiconductor transistors. Solid-State Electronics, 54, 461–474.

    Article  Google Scholar 

  9. Hoshi, Y., Sawano, K., Yamada, A., Nagakura, S., Usami, N., Arimoto, K., et al. (2011). Line width dependence of anisotropic strain state in sige films induced by selective ion implantation. Applied Physics Express, 4, 095701.

    Article  Google Scholar 

  10. Haugerud, B. M., Bosworth, L. A., & Belford, R. E. (2003). Mechanically induced strain enhancement of metal–oxide–semiconductor field effect transistors. Journal of Applied Physics, 94, 4102.

    Article  Google Scholar 

  11. Komoda, T., Oishi, A., Sanuki, T., Kasai, K., Yoshimura, H., Ohno, K., et al. (2004). Mobility improvement for 45 nm node by combination of optimized stress and channel orientation design. In IEDM Technical Digest, pp. 217–220.

    Google Scholar 

  12. Rim, K., Hoyt, J. L., & Gibbons, J. F. (2000). Fabrication and analysis of deep submicron strained-Si n-MOSFET’s. IEEE Transactions on Electronics Devices, 47, 1406–1415.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council for its financial support under contract number 101-2221-E-390-001-MY2, and the staff at United Microelectronics Corporation for their informative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Teng Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chang, WT., Kuo, PH. (2014). Transconductance Enhancement Dependence on the Channel Length of CESL-Strained nMOSFETs. In: Juang, J., Chen, CY., Yang, CF. (eds) Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013). Lecture Notes in Electrical Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-319-04573-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04573-3_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04572-6

  • Online ISBN: 978-3-319-04573-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics