Skip to main content

Time Dynamics and Entropy Production to Thermalization in EGOE

  • Chapter
Embedded Random Matrix Ensembles in Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

  • 1581 Accesses

Abstract

Further application of embedded ensembles (EEs) is to time dynamics and entropy production in isolated finite interacting many-particle systems. Results here are useful in the study of the stability of a quantum computer against quantum chaos and in the study of issues related to statistical relaxation and thermalization in isolated finite quantum systems. It is also possible to address fidelity and Loschmidt echoes in many-particle quantum systems using EEs. Available results in these topics are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Flambaum, Time dynamics in chaotic many-body systems: can chaos destroy a quantum computer? Aust. J. Phys. 53, 489–497 (2000)

    MATH  Google Scholar 

  2. L.F. Santos, F. Borgonovi, F.M. Izrailev, Onset of chaos and relaxation in isolated systems of interacting spins: energy shell approach. Phys. Rev. E 85, 036209 (2012)

    Article  ADS  Google Scholar 

  3. V.K.B. Kota, A. Relaño, J. Retamosa, M. Vyas, Thermalization in the two-body random ensemble, J. Stat. Mech. P10028 (2011)

    Google Scholar 

  4. G.P. Berman, F. Borgonovi, F.M. Izrailev, A. Smerzi, Irregular dynamics in a one-dimensional Bose system. Phys. Rev. Lett. 92, 030404 (2004)

    Article  ADS  Google Scholar 

  5. I. Piz̆orn, T. Prosen, T.H. Seligman, Loschmidt echoes in two-body random matrix ensembles. Phys. Rev. B 76, 035122 (2007)

    Article  ADS  Google Scholar 

  6. V.V. Flambaum, F.M. Izrailev, Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems. Phys. Rev. E 64, 036220 (2001)

    Article  ADS  Google Scholar 

  7. V.K.B. Kota, R. Sahu, Structure of wavefunctions in (1+2)-body random matrix ensembles. Phys. Rev. E 64, 016219 (2001)

    Article  ADS  Google Scholar 

  8. M. Abramowtiz, I.A. Stegun (eds.), Handbook of Mathematical Functions, NBS Applied Mathematics Series, vol. 55 (U.S. Govt. Printing Office, Washington, D.C., 1972)

    Google Scholar 

  9. A. Bohr, B.R. Mottelson, Nuclear Structure, Single-Particle Motion, vol. I (Benjamin, New York, 1969)

    Google Scholar 

  10. I. Dreier, S. Kotz, A note on the characteristic function of the t-distribution. Stat. Probab. Lett. 57, 221–224 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008)

    Article  ADS  Google Scholar 

  12. U. Schneider et al., Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008)

    Article  ADS  Google Scholar 

  13. L. Perfetti et al., Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. Phys. Rev. Lett. 97, 067402 (2006)

    Article  ADS  Google Scholar 

  14. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994)

    Article  ADS  Google Scholar 

  15. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.V. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A 10, 2083–2091 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 452, 854–858 (2008)

    Article  ADS  Google Scholar 

  18. M. Rigol, Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009)

    Article  ADS  Google Scholar 

  19. L.F. Santos, M. Rigol, Onset of quantum chaos in one dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. L.F. Santos, M. Rigol, Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Phys. Rev. E 82, 031130 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. L.F. Santos, F. Borgonovi, F.M. Izrailev, Chaos and statistical relaxation in quantum systems of interacting particles. Phys. Rev. Lett. 108, 094102 (2012)

    Article  ADS  Google Scholar 

  22. V.K.B. Kota, Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems. Phys. Rep. 347, 223–288 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. J.M.G. Gómez, K. Kar, V.K.B. Kota, R.A. Molina, A. Relaño, J. Retamosa, Many-body quantum chaos: recent developments and applications to nuclei. Phys. Rep. 499, 103–226 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, I.V. Ponomarev, Quantum chaos in many-body systems: what can we learn from the Ce atom. Physica D 131, 205–220 (1999)

    Article  ADS  MATH  Google Scholar 

  25. P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  26. S. Goldstein, J.L. Lebowitz, C. Mastrodonato, R. Tumulka, N. Zanghi, Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). Time Dynamics and Entropy Production to Thermalization in EGOE. In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_15

Download citation

Publish with us

Policies and ethics