Skip to main content

Abstract

In this chapter, we give a very short description of Kontsevich’s deformation quantization theorem, and of his algebraic deformation quantization methods, based on the deformation theory described in Chap. 10. We start by explaining the deformation quantization problem for Poisson manifolds and its relation with the Poisson sigma model, described in Chap. 16. We then explain the relation of this quantization problem with deformation theory for associative algebras and dg-categories. We then explain how this can be generalized to a categorical quantization problem for Artin stacks with a shifted symplectic form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cattaneo, A.S., Felder, G.: Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16(4–6), 179–189 (2001). doi:10.1142/S0217732301003255. Euroconference on brane new world and noncommutative geometry (Torino, 2000)

    Article  MathSciNet  Google Scholar 

  2. Cattaneo, A., Keller, B., Torossian, C., Bruguières, A.: Déformation, Quantification, Théorie de Lie. Panoramas et Synthèses [Panoramas and Syntheses], vol. 20, p. 186. Société Mathématique de France, Paris (2005). ISBN 2-85629-183-X

    MATH  Google Scholar 

  3. Francis, J.: The tangent complex and Hochschild cohomology of E_n-rings. arXiv e-prints (2011). arXiv:1104.0181

  4. Keller, B.: Deformation quantization after Kontsevich and Tamarkin. In: Déformation, Quantification, Théorie de Lie. Panor. Synthèses, vol. 20, pp. 19–62. Société Mathématique de France, Paris (2005)

    Google Scholar 

  5. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999). arXiv:math.QA/9904055

    Article  MATH  MathSciNet  Google Scholar 

  6. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). doi:10.1023/B:MATH.0000027508.00421.bf

    Article  MATH  MathSciNet  Google Scholar 

  7. Pantev, T., Toen, B., Vaquie, M., Vezzosi, G.: Quantization and derived moduli spaces I: shifted symplectic structures. arXiv e-prints (2011). arXiv:1111.3209

  8. Tamarkin, D.E.: Another proof of M. Kontsevich formality theorem. arXiv Mathematics e-prints (1998). arXiv:math/9803025

  9. Toen, B.: Branes for ∞-operads. arXiv e-prints (2013). arXiv:1307.0405

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paugam, F. (2014). Topological Deformation Quantizations. In: Towards the Mathematics of Quantum Field Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-04564-1_23

Download citation

Publish with us

Policies and ethics