Skip to main content

Gauge Theories and Their Homotopical Poisson Reduction

  • Chapter
Towards the Mathematics of Quantum Field Theory

Abstract

In this chapter, we define general gauge theories and study their classical aspects. These may also be called local variational problems, because their action functional is a local functional. The corresponding equations of motion are given by an Euler-Lagrange partial differential equation, which we shall study in the setting of non-linear algebraic analysis, presented in Chap. 12. The main interest of our approach over the previous ones is that it is expressed in terms of functors of points. This allows us to always state the nature of the various spaces of functions in play. The chapter starts with a finite dimensional toy model. We then define general gauge theories and formalize their regularity properties, through the study of their higher Noether identities. We proceed to the study of the derived covariant phase space (Batalin-Vilkovisky formalism) and finish by a presentation of the gauge fixing procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnich, G.: A note on gauge systems from the point of view of Lie algebroids. arXiv e-prints (2010). arXiv:1010.0899

  2. Beilinson, A., Drinfeld, V.: Chiral Algebras. American Mathematical Society Colloquium Publications, vol. 51, p. 375. Am. Math. Soc., Providence (2004). ISBN 0-8218-3528-9

    MATH  Google Scholar 

  3. Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981). doi:10.1016/0370-2693(81)90205-7

    Article  MathSciNet  Google Scholar 

  4. Cattaneo, A.S., Felder, G.: Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16(4–6), 179–189 (2001). doi:10.1142/S0217732301003255. Euroconference on brane new world and noncommutative geometry (Torino, 2000)

    Article  MathSciNet  Google Scholar 

  5. Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, vol. 170, p. 251. Am. Math. Soc., Providence (2011). ISBN 978-0-8218-5288-0

    MATH  Google Scholar 

  6. DeWitt, B.: The Global Approach to Quantum Field Theory. Vol. 1, 2. International Series of Monographs on Physics, vol. 114. Clarendon/Oxford University Press, Oxford/New York (2003). ISBN 0-19-851093-4

    Google Scholar 

  7. Fisch, J.M.L., Henneaux, M.: Homological perturbation theory and the algebraic structure of the antifield-antibracket formalism for gauge theories. Commun. Math. Phys. 128(3), 627–640 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fulp, R., Lada, T., Stasheff, J.: Noether’s variational theorem II and the BV formalism. arXiv (2002)

    Google Scholar 

  9. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems, p. 520. Princeton University Press, Princeton (1992). ISBN 0-691-08775-X; 0-691-03769-8

    MATH  Google Scholar 

  10. Illusie, L.: Complexe Cotangent et Déformations. I. Lecture Notes in Mathematics, vol. 239, p. 355. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  11. Paugam, F.: Histories and observables in covariant field theory. J. Geom. Phys. 61(9), 1675–1702 (2011). doi:10.1016/j.geomphys.2010.11.002

    Article  MATH  MathSciNet  Google Scholar 

  12. Paugam, F.: Homotopical Poisson reduction of gauge theories. In: Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Proc. Sympos. Pure Math., vol. 83, pp. 131–158. Am. Math. Soc., Providence (2011)

    Chapter  Google Scholar 

  13. Peierls, R.E.: The commutation laws of relativistic field theory. Proc. R. Soc. Lond. Ser. A 214, 143–157 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schätz, F.: BFV-complex and higher homotopy structures. Commun. Math. Phys. 286(2), 399–443 (2009). doi:10.1007/s00220-008-0705-0

    Article  MATH  Google Scholar 

  15. Stasheff, J.: Deformation theory and the Batalin-Vilkovisky master equation. In: Deformation Theory and Symplectic Geometry (Ascona, 1996). Math. Phys. Stud., vol. 20, pp. 271–284. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  16. Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach. In: Secondary Calculus and Cohomological Physics (Moscow, 1997). Contemp. Math., vol. 219, pp. 195–210. Am. Math. Soc., Providence (1998)

    Chapter  Google Scholar 

  17. Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math. 1, 14–27 (1957)

    MATH  MathSciNet  Google Scholar 

  18. Toën, B., Vezzosi, G.: Homotopical Algebraic Geometry. II. Geometric Stacks and Applications. Mem. Am. Math. Soc. 193(902):x+224 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paugam, F. (2014). Gauge Theories and Their Homotopical Poisson Reduction. In: Towards the Mathematics of Quantum Field Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-04564-1_13

Download citation

Publish with us

Policies and ethics