Skip to main content

Alternating Direction Method of Multipliers for Hierarchical Basis Approximators

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2012

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 97))

  • 922 Accesses

Abstract

Sparse grids have been successfully used for the mining of vast datasets with a moderate number of dimensions. Compared to established machine learning techniques like artificial neural networks or support vector machines, sparse grids provide an analytic approximant that is easier to analyze and to interpret. More important, they are based on a high-dimensional discretization of the feature space, are thus less data-dependent than conventional approaches, scale only linearly in the number of data points and are well-suited to deal with huge amounts of data. But with an increasing size of the datasets used for learning, computing times clearly can become prohibitively large for normal use, despite the linear scaling. Thus, efficient parallelization strategies have to be found to exploit the power of modern hardware. We investigate the parallelization opportunities for solving high-dimensional machine learning problems with adaptive sparse grids using the alternating direction method of multipliers (ADMM). ADMM allows us to split the initially large problem into smaller ones. They can then be solved in parallel while their reduced problem sizes can even be small enough for an explicitly assembly of the system matrices. We show the first results of the new approach using a set of problems and discuss the challenges that arise when applying ADMM to a hierarchical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-linear Programming (Stanford University Press, Stanford, 1958)

    MATH  Google Scholar 

  2. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Prentice-Hall, Upper Saddle River, 1989)

    MATH  Google Scholar 

  3. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  MATH  Google Scholar 

  4. J. Eckstein, M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art (Springer, US, 1994), pp. 115–134

    Google Scholar 

  5. M.A.T. Figueiredo, J.M. Bioucas-Dias, Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. Publ. IEEE Signal Proc. Soc. 19(12), 3133–3145 (2010)

    Article  MathSciNet  Google Scholar 

  6. M. Fortin, R. Glowinski, Augmented Lagrangian methods in quadratic programming, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and its Applications, vol. 15 (Springer, Berlin, 1983), pp. 1–46

    Google Scholar 

  7. J. Friedman, Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MATH  Google Scholar 

  8. M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1(1), 93–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, ed. by M. Fortin, R. Glowinski. Studies in Mathematics and Its Applications, vol. 15 (Elsevier, New York, 1983), pp. 299–331

    Google Scholar 

  10. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  11. J. Garcke, M. Griebel, On the Parallelization of the Sparse Grid Approach for Data Mining (Springer, Berlin, 2001), pp. 22–32

    Google Scholar 

  12. J. Garcke, M. Griebel, M. Thess, Data mining with sparse grids. Computing 67(3), 225–253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Garcke, M. Hegland, O. Nielsen, Parallelisation of sparse grids for large scale data analysis, in Computational Science — ICCS 2003, ed. by P.M.A. Sloot, D. Abramson, A.V. Bogdanov, Y.E. Gorbachev, J.J. Dongarra, A.Y. Zomaya. Lecture Notes in Computer Science, vol. 2659 (Springer, Berlin, 2003), pp. 683–692

    Google Scholar 

  14. R. Glowinski, A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9(2), 41–76 (1975)

    Google Scholar 

  15. R. Glowinski, P.L. Tallec, Augmented Lagrangian Methods for the Solution of Variational Problems, Chap. 3 (Society for Industrial and Applied Mathematics, Philadelphia 1989), pp. 45–121

    Google Scholar 

  16. K. Goto, R. Van De Geijn, High-performance implementation of the level-3 BLAS. ACM Trans. Math. Softw. 35(1), 1–4 (2008) [Article 4]

    Google Scholar 

  17. B. He, H. Yang, S. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Heinecke, D. Pflüger, Multi- and many-core data mining with adaptive sparse grids, in Proceedings of the 8th ACM International Conference on Computing Frontiers (ACM, New York, 2011), pp. 29:1–29:10

    Google Scholar 

  19. A. Heinecke, D. Pflüger, Emerging architectures enable to boost massively parallel data mining using adaptive sparse grids. Int. J. Parallel Prog. 41(3), 357–399 (2013)

    Article  Google Scholar 

  20. D. Pflüger, SG\(++\) (2013). http://www5.in.tum.de/SGpp

  21. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)

    Google Scholar 

  22. G. Steidl, T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36, 168–184 (2010)

    Article  MathSciNet  Google Scholar 

  23. X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Khakhutskyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Khakhutskyy, V., Pflüger, D. (2014). Alternating Direction Method of Multipliers for Hierarchical Basis Approximators. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2012. Lecture Notes in Computational Science and Engineering, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-04537-5_9

Download citation

Publish with us

Policies and ethics