Skip to main content

Adjoint Error Estimation for Stochastic Collocation Methods

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2012

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 97))

Abstract

This paper deals with partial differential equations with random input data. An efficient way of solving such problems is adaptive stochastic collocation on sparse grids. For higher efficiency and a better understanding of the method, we derive adjoint error estimates for nonlinear stochastic solution functionals. The resulting adjoint problem also involves random parameters and can be treated by stochastic collocation as well. Only a few adjoint evaluations are required in order to estimate the deterministic error, while the stochastic error requires much more effort to be detected. To overcome these substantial additional costs, we suggest to replace the adjoint problem by a reduced model and demonstrate the applicability of the approach for nonlinear solution functionals and up to nine random dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Alekseev, I. Navon, M. Zelentsov, The estimation of functional uncertainty using polynomial chaos and adjoint equations. Int. J. Numer. Methods Fluids 67(3), 328–341 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Almeida, J. Oden, Solution verification, goal-oriented adaptive methods for stochastic advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 199(37–40), 2472–2486 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuška, R. Tempone, G. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1251–1294 (2005)

    Article  MATH  Google Scholar 

  4. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Barth, C. Schwab, N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Barthelmann, E. Novak, K. Ritter, High-dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12(4), 273–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Begumisa, I. Robinson, Suboptimal Kronrod extension formulae for numerical quadrature. Numer. Math. 58(8), 807–818 (1991)

    MATH  MathSciNet  Google Scholar 

  9. G. Berkooz, P. Holmes, J. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Dyn. 25, 539–579 (1993)

    Article  MathSciNet  Google Scholar 

  10. M. Bieri, C. Schwab, Sparse high order FEM for elliptic SPDEs. Comput. Methods Appl. Mech. Eng. 198(13–14), 1149–1170 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Boyaval, C. Le Bris, Y. Maday, N. Nguyen, A. Patera, A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable Robin coefficient. Comput. Methods Appl. Mech. Eng. 198(41–44), 3187–3206 (2009)

    Article  MATH  Google Scholar 

  12. H. Bungartz, S. Dirnstorfer, Multivariate quadrature on adaptive sparse grids. Computing 71(1), 89–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  14. T. Butler, C. Dawson, T. Wildey, A posteriori error analysis of stochastic differential equations using polynomial chaos expansions. SIAM J. Sci. Comput. 33(3), 1267–1291 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Cliffe, M. Giles, R. Scheichl, A. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Elman, O. Ernst, D. O’Leary, M. Stewart, Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering. Comput. Methods Appl. Mech. Eng. 194(9–11), 1037–1055 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. O. Ernst, E. Ullmann, Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl. 31(4), 1848–1872 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Estep, A short course on duality, adjoint operators, Green’s functions, and a posteriori error analysis. Technical report, Department of Mathematics, Colorado State University, Fort Collins, 2004. Available on http://www.stat.colostate.edu/~estep/

  19. J. Foo, X. Wan, G. Karniadakis, The multi-element probabilistic collocation method (ME-PCM): error analysis and applications. J. Comput. Phys. 227(22), 9572–9595 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Frauenfelder, C. Schwab, R. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2–5), 205–228 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Ganapathysubramanian, N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225(1), 652–685 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Genz, B. Keister, Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71(2), 299–309 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Gerstner, M. Griebel, Numerical integration using sparse grids. Numer. Algorithms 18(3–4), 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Gerstner, M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  26. M. Griebel, J. Hamaekers, Sparse grids for the Schrödinger equation. Math. Model. Numer. Anal. 41(2), 215–247 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Hegland, A. Hellander, P. Lötstedt, Sparse grids and hybrid methods for the chemical master equation. BIT Numer. Math. 48, 265–283 (2008)

    Article  MATH  Google Scholar 

  29. F. Heiss, V. Winschel, Quadrature on sparse grids: code to generate and readily evaluated nodes and weights, 2007. Available on http://sparse-grids.de/

  30. A. Klimke, B. Wohlmuth, Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw. 31(4), 561–579 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Knezevic, N. Nguyen, A. Patera, Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Models Methods Appl. Sci. 21(7), 1415–1442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Kronrod, Nodes and Weights of Quadrature Formulas. Sixteen-Place Tables. Authorized Translation from the Russian, 2nd edn. (Consultants, New York, 1966)

    Google Scholar 

  33. O. Le Maître, O. Knio, Spectral Methods for Uncertainty Quantification. With Applications to Computational Fluid Dynamics (Springer, Dordrecht, 2010)

    Google Scholar 

  34. O. Le Maître, M. Reagan, H. Najm, G. Ghanem, O. Knio, A stochastic projection method for fluid flow. II: random process. J. Comput. Phys. 181(1), 9–44 (2002)

    MATH  Google Scholar 

  35. S. Li, L. Petzold, Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. J. Comput. Phys. 198(1), 310–325 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Lieberman, K. Willcox, O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32(5), 2523–2542 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Liu, Z. Gao, J. Hesthaven, Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty. Appl. Numer. Math. 61(1), 24–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Mathelin, O. Le Maître, Dual-based a posteriori error estimate for stochastic finite element methods. Commun. Appl. Math. Comput. Sci. 2, 83–115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. F. Nobile, R. Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Methods Eng. 80(6–7), 979–1006 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. F. Nobile, R. Tempone, C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. E. Novak, K. Ritter, Simple cubature formulas with high polynomial exactness. Constr. Approx. 15(4), 499–522 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. T. Patterson, The optimum addition of points to quadrature formulae. Math. Comput. 22, 847–856 (1968)

    Article  MATH  Google Scholar 

  44. T. Patterson, Modified optimal quadrature extensions. Numer. Math. 64(4), 511–520 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. C. Powell, H. Elman, Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29(2), 350–375 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Rosseel, S. Vandewalle, Iterative solvers for the stochastic finite element method. SIAM J. Sci. Comput. 32(1), 372–397 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. L. Sirovich, Turbulence and the dynamics of coherent structures I: coherent structures. II: symmetries and transformations. III: dynamics and scaling. Q. Appl. Math. 45, 561–590 (1987)

    MATH  MathSciNet  Google Scholar 

  48. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963)

    MATH  MathSciNet  Google Scholar 

  49. S. Volkwein, Model reduction using proper orthogonal decomposition, in Script in English language (2011), 43 pp. Available on http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php

  50. N. Wiener, The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  51. D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. D. Xiu, G. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  53. D. Xiu, G. Karniadakis, A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Transf. 46(24), 4681–4693 (2003)

    Article  MATH  Google Scholar 

  54. N. Zabaras, B. Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach. J. Comput. Phys. 227(9), 4697–4735 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, Proceedings of the 6th GAMM-Seminar, Kiel, 1990, ed. by W. Hackbusch. Notes on Numerical Fluid Mechanics, vol. 31 (Vieweg, Braunschweig, 1991), pp. 241–251

    Google Scholar 

Download references

Acknowledgements

This work was supported by the “Excellence Initiative” of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schieche, B., Lang, J. (2014). Adjoint Error Estimation for Stochastic Collocation Methods. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2012. Lecture Notes in Computational Science and Engineering, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-04537-5_12

Download citation

Publish with us

Policies and ethics