Skip to main content

Setting and Drying of Bio-Based Building Materials

  • Chapter
  • First Online:
Book cover Drying and Wetting of Building Materials and Components

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 4))

  • 1092 Accesses

Abstract

Bio-based materials become successful in the field of building construction because of their sustainability and environmental benefit. In the present chapter, we focus on one of them: Hemp Concrete. This material is made out of hemp shivs mixed with a pre-formulated lime based binder and water, and can be manufactured through three classical processes: spraying, moulding or mechanical mixing and tamping. Similarly to classical concrete, setting and drying are important stages since it influences the mechanical and hygrothermal properties. Here, setting and drying stages are investigated through different experiments performed on several instrumented blocks and on a large-scale wall during the curing time. The instrumentation (thermocouples, humidity sensors, weight-scales) allows investigating the drying kinetics and apprehending the hygrothermal behaviour of the material. It is observed that manufacturing process influences the initial water content whereas the hygrothermal behaviour depends on the material formulation. In addition, a model of multi-physics knowledge taking into account the various couplings is developed to predict desorption kinetics. Particular attention is paid in the experimental determination of hygrothermal properties. A roughly good agreement was found between simulations and experiments for different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.limatb.univ-ubs.fr.

References

  • Green Building Home Page (2013) Available online: http://www.ciwmb.ca.gov/GreenBuilding/. Accessed 22 Apr 2013

  • Joseph P, Tretsiakova-McNally S (2010) Sustainable non-metallic building materials. Sustainability 2(2):400–427

    Article  Google Scholar 

  • Woolley T (2006) Natural building: a guide to materials and techniques, Ramsbury, The Crowood Press Ltd, Marlborough

    Google Scholar 

  • Glass J, Dainty ARJ, Gibb AGF (2008) New build: materials, techniques, skills and innovation. Energy Policy 36(12):4534–4538

    Article  Google Scholar 

  • Karade SR (2010) Cement-bonded composites from lignocellulosic wastes. Constr Build Mater 24(8):1323–1330

    Article  Google Scholar 

  • De Bruijn PB, Jeppsson KH, Sandin K, Nilsson C (2009) Mechanical properties of lime-hemp concrete containing shivs and fibres. Biosyst Eng 103(4):474–479

    Article  Google Scholar 

  • Bütschi PY, Deschenaux C, Miao B, Srivastava NK (2004) Caractérisation d’une maçonnerie composée d’éléments en aggloméré de chanvre. Revue canadienne de génie civil 31(3):526–529 (in French)

    Article  Google Scholar 

  • Nguyen TT, Picandet V, Amziane S, Baley C (2009) Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. Eur J Environ Civil Eng 13(9):1039–1050

    Article  Google Scholar 

  • Nozahic V, Amziane S, Torrent G, Saïdi K, De Baynast H (2012) Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cement Concr Compos 34:231–241

    Article  Google Scholar 

  • Lanos C, Collet F, Lenain G, Hustache Y (2013) Formulation and implementation. In: Amziane S, Arnaud L, Challamel N (eds) Bio-aggregate-based building materials. Wiley, Hoboken 117–152

    Google Scholar 

  • Chamoin J, Collet F, Pretot S, Lanos C (2011) Réduction du pouvoir absorbant de chènevottes par traitement imperméabilisant. Matériaux Tech 99(6):633–641

    Article  Google Scholar 

  • Lanas J, Pérez Bernal JL, Bello MA, Alvarez Galindo JI (2004) Mechanical properties of natural hydraulic lime-based mortars. Cem Concr Res 34(12):2191–2201

    Article  Google Scholar 

  • Lawrence RM, Mays TJ, Rigby SP, Walker P, D’Ayala D (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem Concr Res 37(7):1059–1069

    Article  Google Scholar 

  • Gu X, Song X (2010) Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv Mater Res 133–134:241–246

    Google Scholar 

  • Faure P, Peter U, Leseur D, Coussot P (2012) Water transfers within hemp lime concrete followed by NMR. Cem Concr Res 42:1468–1474

    Article  Google Scholar 

  • Thiery M, Baroghel-Bouny V, Bourneton N, Villain G, Stefani C (2007) Modelling of drying of concrete—Analysis of the different moisture transport modes. Rev Euro Gén Civ 11(5):541–577

    Google Scholar 

  • Evrard A (2008) Transient hygrothermal behavior of lime-hemp materials. PhD thesis, Université Catholique de Louvain

    Google Scholar 

  • Collet F, Chamoin J, Pretot S, Lanos C (2013) Comparison of the hygric behaviour of three hemp concretes. Energy Build 62:294–303

    Article  Google Scholar 

  • De Bruijn PB (2012) Material properties and full-scale rain exposure of lime-hemp concrete walls. PhD thesis, Swedish University of Agricultural Sciences

    Google Scholar 

  • Colinart T, Glouannec P, Chauvelon P (2012) Influence of the setting process and the formulation on the drying of hemp concrete. Constr Build Mater 30:372–380

    Article  Google Scholar 

  • European Standard EN EN 772-13 (2000) Methods of test for mansonry units, Part 13: determination of net and gross dry density of mansonry units

    Google Scholar 

  • Colinart T, Glouannec P, Pierre T, Chauvelon P, Magueresse A (2013) Experimental study on the hygrothermal behavior of a coated sprayed hemp concrete wall. Buildings 3:79–99

    Article  Google Scholar 

  • Cerezo V (2005) Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales : approche expérimentale et modélisation théorique. PhD thesis, ENTPE (in French)

    Google Scholar 

  • Arnaud L, Gourlay E (2012) Experimental study of parameters influencing mechanical properties of hemp concrete. Constr Build Mater 28(1):50–56

    Article  Google Scholar 

  • Glouannec P, Collet F, Lanos C, Mounanga P, Pierre T, Poullain P, Pretot S, Chamoin J, Zaknoune A (2011) Physical properties of Hempcrete. Matériaux Tech 99:657–665

    Article  Google Scholar 

  • Elfordy S, Lucas F, Tancret F, Scudeller Y, Goudet L (2008) Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr Build Mater 22(10):2116–2123

    Article  Google Scholar 

  • European Standard EN 12667 (2001) Thermal performance of building materials and products—determination of thermal resistance by means of guarded hot plate and heat flow meter methods—products of high and medium thermal resistance

    Google Scholar 

  • Pierre T, Colinart T, Glouannec P (2013) Measurement of thermal properties of biosourced building materials. Int J Thermophys 1–21

    Google Scholar 

  • EN ISO 12571 (2013) Hygrothermal performance of building materials and products—Determination of hygroscopic sorption properties

    Google Scholar 

  • Guggenheim EA (1966) Application of statistical mechanics. Clarendon Press, Oxford

    Google Scholar 

  • Künzel HM (1995) Simultaneous heat and moisture transport in building component: one- and two-dimensional calculation using simple parameters. PhD Thesis, Fraunhofer-IBP, Stuttgart

    Google Scholar 

  • EN ISO 12572, Hygrothermal performance of building materials and products—Determination of water vapour transmission properties

    Google Scholar 

  • ASTM E 96/E 96M (2012) Standard test methods for water vapour transmission of materials. ASTM international, West Conshohocken, pp 19428–2959

    Google Scholar 

  • Mukhopadhyaya P, Kumaran K, Lackey J, van Reenen D (2007) Water vapor transmission measurement and significance of corrections. J ASTM Int 4(8):1–12

    Article  Google Scholar 

  • Zaknoune A, Glouannec P, Salagnac P (2013) Identification of liquid and vapour transport parameters of an ecological building material in early ages. Transp Porous Media 98(3):589–613

    Article  Google Scholar 

  • Krus M, Kunzel HM (1993) Determination of Dw from A-value. IEA Annex XXIV Report T3-D-93/02

    Google Scholar 

  • EN ISO 15148 (2002) Hygrothermal performance of building materials and products—Determination of water absorption coefficient by partial immersion

    Google Scholar 

  • Plagge R, Scheffler G, Grunewald J (2005) Automatic measurement of water uptake coefficient of building materials. In: Proceedings of 7th conference of building physics in Northern Countries, pp 15–22

    Google Scholar 

  • Philip JR, De Vries DA (1953) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38:222–232

    Article  Google Scholar 

  • Luikov AV (1957) System of differential equation of heat and mass transfer in capillary porous bodies. Int J Heat Mass Transf 10:1–14

    Google Scholar 

  • Whitaker S (1977) Simulation heat mass and momentum transfer in porous media: a dry theory of drying. Adv Heat Transfer 13:119–203

    Article  Google Scholar 

  • Delgado JMPQ, Ramos NMM, Barreira E, De Freitas VP (2010) A critical review of hygrothermal models used in porous building materials. J Porous Media 13:221–234

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank the Brittany Regional Council, the National Research Agency of France and FEDER funds for their financial contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Colinart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colinart, T., Glouannec, P. (2014). Setting and Drying of Bio-Based Building Materials. In: Delgado, J. (eds) Drying and Wetting of Building Materials and Components. Building Pathology and Rehabilitation, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-04531-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04531-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04530-6

  • Online ISBN: 978-3-319-04531-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics