Skip to main content

Moisture Transfer Kinetics in Building Materials and Components: Modeling, Experimental Data, Simulation

  • Chapter
  • First Online:
Drying and Wetting of Building Materials and Components

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 4))

Abstract

Moisture is one of the most damaging factors of buildings. Masonries moisture content is defined by a delicate equilibrium established between the building and the environment. First order mathematical models can describe satisfactory phenomena like capillary rise and drying kinetics. Their advantages lie on the fact that they are general and include parameters with physical meaning. These parameters quantify the environment effect (temperature, relative humidity, air velocity) and the materials properties (porosity, density, average pore radius etc.). Constants introduced, such as capillary and drying time constant, correspond to the time that phenomena, capillary rise and drying, reach their equilibrium state. Furthermore, the same models can be used for the simulation of these phenomena on building components, leading to the development of a decision making tool for the design and selection of the most appropriate repair materials for masonries suffering by rising damp, based on materials microstructural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a w :

Air water activity (–)

b i :

Oswin equations constants

c i :

Drying kinetic constants

D w :

Masonry width (m)

D p :

Plaster width (m)

ε cap :

Capillary active porosity (%)

ε o :

Total porosity (%)

ε w :

Wall total porosity (%)

ε p :

Plaster total porosity (%)

g :

Gravitational constant (m/s)

H :

Capillary rise height (m)

He :

Capillary moisture equilibrium height (m)

Η ew :

Wall moisture equilibrium height (m)

Η ep :

Plaster moisture equilibrium height (m)

H oi :

Capillary rise constants (m)

m dry :

Dry mass of sample (g)

m c :

Mass of sample saturated with water after capillary rise (g)

m i :

Mass of sample saturated with water after immersion (g)

n :

Viscosity of water (Kg/sm)

ρ bw :

Wall bulk density (kg/m3)

k cw :

Constant (kg/m2d)

k cp :

Constant (kg/m2d)

k dp :

Constant (kg/m2d)

ρ bp :

Plaster bulk density (kg/m3)

ρ sw :

Wall true density (kg/m3)

ρ sp :

Plaster true density (kg/m3)

ρ :

Water density (g/cm3)

r p :

Plaster average pore radius (μm)

r w :

Wall average pore radius (μm)

s :

Specific surface (m2/g)

σ :

Water surface tension (dyn/cm)

T :

Air Temperature (°C)

t cw :

Wall capillary time constant (d)

t cp :

Plaster capillary time constant (d)

t c :

Capillary time constant (d)

t d :

Drying time constant (h)

t dp :

Plaster drying time constant (h)

u :

Air velocity (m/s)

V cum :

Total cumulative volume (mm3/g)

V p :

Total pore volume (mm3)

V s :

Material total volume (mm3)

X c :

Capillary moisture saturation content (kg/kg db)

X cp :

Plaster capillary equilibrium moisture content (kg/kg db)

X cw :

Wall capillary equilibrium moisture content (kg/kg db)

X ep :

Plaster equilibrium material moisture content

X i :

Total moisture saturation content (kg/kg db)

X o :

Initial moisture content (kg/kg db)

References

  • Amoroso GG, Camaiti M (1997) Scienza dei materiali e restauro. ALINEA, Bolgona

    Google Scholar 

  • Arnold A (1982) Rising damp and saline minerals. In: 4th international conference on the deterioration and preservation of stone objects, Louisville, Kentucky, pp 11–28

    Google Scholar 

  • Avoletti M (1997) Contro l’umitida’ ascendente. Recupero & Conservazione 17:58–705

    Google Scholar 

  • Biscontin G (1998) La risalita capillare dell’acqua nelle murature: note per la diagnosi e il risanamento. Recupero edilizio, Umidita Techniche e prodotti di risanamento, ALINE EDITRICE, pp 61–67

    Google Scholar 

  • Canada Mortgage and Housing Corporation (2003) Review of hygro-thermal models for building envelope retrofit analysis, research highlights. Technical series 03-128. http://www.cmhc-schl.gc.ca/publications/en/rh-pr/tech/03-128-e.htm

  • Connoly JD (1993) Humidity and building materials. In: Rose WB, Tenwolde a (eds) Bugs, mold and rot II, proceedings of a workshop by the building environment and thermal envelope council of the National Institute of Building Sciences, Washington DC, NIBS, pp 29–36

    Google Scholar 

  • Dantas LB, Orlande HRB, Cotta RM (2003) An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. Int J Heat Mass Transfer 46:1587–1598

    Article  MATH  Google Scholar 

  • Dietl C, Winter E, Viskanta R (1998) An efficient simulation of heat and mass transfer processes during drying of capillary porous hygroscopic materials. Int J Heat Mass Transfer 41:3611–3625

    Article  MATH  Google Scholar 

  • Gennes PG, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

    Book  Google Scholar 

  • Hall C, Hoff W (2002) Water transport in brick, stone and concrete. Spon Press, London and New York

    Book  Google Scholar 

  • International Energy Agency (1990) Guidelines and Practice. In: Energy conservation in buildings and community systems programme, Annex XIV consensation and evergy, vol 2

    Google Scholar 

  • International Union of Pure and Applied Chemistry (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758

    Google Scholar 

  • Karoglou M, Moropoulou A, Giakoumaki A, Krokida MK (2005a) Capillary rise kinetics of some building materials. J Colloid Interface Sci 284(1):260–264

    Article  Google Scholar 

  • Karoglou M, Moropoulou A, Krokida MK, Maroulis ZB (2005b) Drying kinetics of some building materials. Dry Technol 23(1–2):305–315

    Article  Google Scholar 

  • Karoglou M, Moropoulou A, Krokida MK, Maroulis ZB (2005c) Water sorption isotherms of some building materials. Dry Technol 23(1–2):289–303x

    Article  Google Scholar 

  • Kieß K (1989) Bauphysikalische Einflüsse bei der Krustenbildung am Gestein alter Bauwerke. Bauphysic 11(1):44–49

    Google Scholar 

  • Konstantopoulos DK, Maroulis VZ, Karoglou M, Moropoulou A, Mujumdar AS (2007) HygroScope: a moisture transfer simulator for buildings. Dry Technol 25(6):1119–1125

    Article  Google Scholar 

  • Mangel A (1999) Investigating a range of solid samples by automatic water sorption. J Therm Anal Calorim 55:581–599

    Article  Google Scholar 

  • Künzel HM (1995) Simultaneous heat and moisture transport in building components:one- and two-dimensional calculation using simple parameters. In: Phd thesis, Fraunhofer IRB Verlag

    Google Scholar 

  • Marinos-Kouris D, Maroulis ZB (1995) Transport properties in the drying of solids. In: Mujumdar AS (ed) Handbook of industrial drying, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Massari G, Massari I (1981) Risanamento igienico dei locali umidi. Hoepli, Trento

    Google Scholar 

  • Meng B (1994) Calculation of moisture transport coefficients on the basis of relevant pore structure parameters. Mater Struct 27:125–134

    Article  Google Scholar 

  • Oliver A (1997) Dampness in buildings. In: Douglas J, Sterling JS (eds) 2nd edn. Blackwell science, Great Britain

    Google Scholar 

  • Oxley TA, Gobert EG (1998) Dampness in buildings: diagnosis, treatment, instruments, 2nd edn. Biddles Ltd Guilford and King’s Lynn, Great Britain

    Google Scholar 

  • Saravacos GD, Maroulis ZB (2001) Transport properties of foods. Marcel Dekker, New York

    Google Scholar 

  • Torraca G (1981) Porous building materials. ICCROM, Rome

    Google Scholar 

  • Washburn E (1921) The dynamics of capillary flow. Phys Rev 17(3):273

    Article  Google Scholar 

  • Zaknoune A, Glouannec P, Salagnac P (2012) Estimation of moisture transport coefficients in porous materials using experimental drying kinetics. Int J Heat Mass Transfer 48:205–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Karoglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moropoulou, A., Karoglou, M., Bakolas, A., Krokida, M., Maroulis, Z.B. (2014). Moisture Transfer Kinetics in Building Materials and Components: Modeling, Experimental Data, Simulation. In: Delgado, J. (eds) Drying and Wetting of Building Materials and Components. Building Pathology and Rehabilitation, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-04531-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04531-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04530-6

  • Online ISBN: 978-3-319-04531-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics