Skip to main content

Lecture 5 Semi-structured, Weakly Structured, and Unstructured Data

  • Chapter
  • First Online:
Biomedical Informatics
  • 2297 Accesses

Abstract

At the end of this fourth lecture, you:

  • would have acquired background knowledge on some issues in standardization and structurization of data;

  • would have a general understanding of modeling knowledge in medicine and biomedical informatics;

  • would get some basic knowledge on medical Ontologies and be aware of the limits, restrictions, and shortcomings of them;

  • would know the basic ideas and the history of the International Classification of Diseases (ICD);

  • would have a view on the Standardized Nomenclature of Medicine Clinical Terms (SNOMED CT);

  • would have some basic knowledge on Medical Subject Headings (MeSH);

  • would be able to understand the fundamentals and principles of the Unified Medical Language System (UMLS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NP = nondeterministic polynomial time; in computational complexity theory NP is one of the fundamental complexity classes.

References

  • Aarts E, Lenstra J (1997) Local search in combinatorial optimization. Wiley, New York, NY

    MATH  Google Scholar 

  • Achard F, Vaysseix G, Barillot E (2001) XML, bioinformatics and data integration. Bioinformatics 17(2):115

    Article  Google Scholar 

  • Barabási A-L, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A Stat Mech Its Appl 272(1–2):173–187

    Article  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Bondy JA, Murty USR (1976) Graph theory with applications. Macmillan, London

    MATH  Google Scholar 

  • Boyen P, Van Dyck D, Neven F, Van Ham RCHJ, Van Dijk ADJ (2011) SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform 8(5):1344–1357

    Google Scholar 

  • Catchpoole DR, Kennedy P, Skillicorn DB, Simoff S (2010) The curse of dimensionality: a blessing to personalized medicine. J Clin Oncol 28(34):E723–E724

    Article  Google Scholar 

  • Chien KR, Domian IJ, Parker KK (2008) Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322(5907):1494

    Article  Google Scholar 

  • Costa LF, Rodrigues FA, Cristino AS (2008) Complex networks: the key to systems biology. Genet Mol Biol 31(3):591–601

    Article  Google Scholar 

  • Costa LF, Rodrigues FA, Travieso G, Boas PRV (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dehmer M, Emmert-Streib F, Mehler A (2011) Towards an information theory of complex networks: statistical methods and applications. Birkhäuser, Boston, MA

    Book  Google Scholar 

  • Dhar V (2013) Data science and prediction. Commun ACM 56(12):64–73

    Article  Google Scholar 

  • Diestel R (2010) Graph theory, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, New York, NY

    Book  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Edelsbrunner H, Harer JL (2010) Computational topology: an introduction. American Mathematical Society, Providence, RI

    Google Scholar 

  • Fekete J-D (2004) The infovis toolkit. Information visualization, INFOVIS 2004. IEEE, Washington, DC, pp 167–174

    Google Scholar 

  • Forster C, Vossen G (2012) Exploiting XML technologies in medical information systems. In: Proceedings of the 25th Bled eConference eDependability: reliable and trustworthy eStructures, eProcesses, eOperations and eServices for the future, Bled, Slovenia, pp 70–83

    Google Scholar 

  • Gaal SA (1966) Point set topology, 2nd edn. Academic, New York, NY

    Google Scholar 

  • Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems biology. Nature 461(7266):908–915

    Article  Google Scholar 

  • Golumbic MC (2004) Algorithmic graph theory and perfect graphs. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Henzinger MR, Klein P, Rao S, Subramanian S (1997) Faster shortest-path algorithms for planar graphs. J Comput Syst Sci 55(1):3–23

    Article  MATH  MathSciNet  Google Scholar 

  • Hodgman CT, French A, Westhead DR (2010) Bioinformatics, 2nd edn. Taylor & Francis, New York, NY

    Google Scholar 

  • Holzinger A (2003) Basiswissen IT/Informatik. Band 2: Informatik. Das Basiswissen für die Informationsgesellschaft des 21. Jahrhunrets, Vogel Buchverlag, Wuerzburg.

    Google Scholar 

  • Holzinger A (2011) Weakly structured data in health-informatics: the challenge for human-computer interaction. In: Baghaei N, Baxter G, Dow L, Kimani S (eds) Proceedings of INTERACT 2011 workshop: promoting and supporting healthy living by design. IFIP, Lisbon, Portugal, pp 5–7

    Google Scholar 

  • Holzinger A (2012) On knowledge discovery and interactive intelligent visualization of biomedical data: challenges in human–computer interaction & biomedical informatics. In: Helfert M, Fancalanci C, Filipe J (eds) DATA - international conference on data technologies and applications. INSTICC, Rome, pp 5–16

    Google Scholar 

  • Holzinger A, Ofner B, Stocker C, Valdez AC, Schaar AK, Ziefle M, Dehmer M (2013a) On graph entropy measures for knowledge discovery from publication network data. In: Cuzzocrea A, Kittl C, Simos DE, Weippl E, Xu L (eds) Multidisciplinary research and practice for information systems, vol LNCS 8127, Springer lecture notes in computer science. Springer, Heidelberg, pp 354–362

    Google Scholar 

  • Holzinger A, Simonic KM, Geier M, Ofner B, Müller R, Heschl S, Prause G (2013) Constraints of list‐based knowledge interaction on an android app for emergency medicine. Medicine 2.0 London, Oral Presentation on 23 Sept 2013 (Online). http://www.medicine20congress.com/ocs/index.php/med/med2013/paper/view/1479

  • Holzinger A, Stocker C, Ofner B, Prohaska G, Brabenetz A, Hofmann-Wellenhof R (2013c) Combining HCI, natural language processing, and knowledge discovery - potential of IBM content analytics as an assistive technology in the biomedical domain, vol LNCS 7947, Springer lecture notes in computer science. Springer, Heidelberg, pp 13–24

    Google Scholar 

  • Kim PM, Korbel JO, Gerstein MB (2007) Positive selection at the protein network periphery: evaluation in terms of structural constraints and cellular context. Proc Natl Acad Sci U S A 104(51):20274–20279

    Article  Google Scholar 

  • Kleinberg JM (2000) Navigation in a small world. Nature 406(6798):845

    Article  Google Scholar 

  • Koontz WLG, Narendra PM, Fukunaga K (1976) A graph-theoretic approach to nonparametric cluster analysis. IEEE Trans Comput 100(9):936–944

    Article  MathSciNet  Google Scholar 

  • Kreuzthaler M, Bloice MD, Faulstich L, Simonic KM, Holzinger A (2011) A comparison of different retrieval strategies working on medical free texts. J Univ Comput Sci 17(7):1109–1133

    Google Scholar 

  • Kropatsch W, Burge M, Glantz R (2001) Graphs in image analysis. In: Kropatsch W, Bischof H (eds) Digital image analysis. Springer, New York, NY, pp 179–197

    Chapter  Google Scholar 

  • Lage K, Møllgård K, Greenway S, Wakimoto H, Gorham JM, Workman CT, Bendsen E, Hansen NT, Rigina O, Roque FS (2010) Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol 6(1):1–9

    Google Scholar 

  • Lézoray O, Grady L (2012) Graph theory concepts and definitions used in image processing and analysis. In: Lézoray O, Grady L (eds) Image processing and analysing with graphs: theory and practice. CRC Press, Boca Raton, FL, pp 1–24

    Google Scholar 

  • Louie B, Mork P, Martin-Sanchez F, Halevy A, Tarczy-Hornoch P (2007) Data integration and genomic medicine. J Biomed Inform 40(1):5–16

    Article  Google Scholar 

  • Lucchi A, Smith K, Achanta R, Lepetit V, Fua P (2010) A fully automated approach to segmentation of irregularly shaped cellular structures in EM images. Medical image computing and computer-assisted intervention—MICCAI 2010. Springer, Berlin, pp 463–471

    Google Scholar 

  • Meijster A, Roerdink JB (1995) A proposal for the implementation of a parallel watershed algorithm. Computer analysis of images and patterns. Springer, Berlin, pp 790–795

    Book  Google Scholar 

  • Milgram S (1967) The small world problem. Psychol Today 2(1):60–67

    MathSciNet  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  MATH  MathSciNet  Google Scholar 

  • Rassinoux A-M, Lovis C, Baud R, Geissbuhler A (2003) XML as standard for communicating in a document-based electronic patient record: a 3 years experiment. Int J Med Inform 70(2–3):109–115

    Article  Google Scholar 

  • Roerdink JB, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41(1):187–228

    MATH  MathSciNet  Google Scholar 

  • Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T, Søeby K, Bredkjær S, Juul A, Werge T, Jensen LJ, Brunak S (2011) Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput Biol 7(8):e1002141

    Article  Google Scholar 

  • Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M, Peñaloza-Spínola MI, Martínez-Antonio A, Karp PD, Collado-Vides J (2006) The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinform 7(1):5

    Article  Google Scholar 

  • Schadt EE, Lum PY (2006) Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J Lipid Res 47(12):2601–2613

    Article  Google Scholar 

  • Schmid AK, Reiss DJ, Pan M, Koide T, Baliga NS (2009) A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Mol Syst Biol 5(1):1–9

    Google Scholar 

  • Simon HA (1973) The structure of ill structured problems. Artif Intell 4(3–4):181–201

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  Google Scholar 

  • Usdin T, Graham T (1998) XML: not a silver bullet, but a great pipe wrench. ACM Stand View 6(3):125–132

    Google Scholar 

  • Van Den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534

    Article  Google Scholar 

  • Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell 13(6):583–598

    Article  Google Scholar 

  • Wang Z, Zhang JZ (2007) In search of the biological significance of modular structures in protein networks. PLoS Comput Biol 3(6):1011–1021

    MathSciNet  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  Google Scholar 

  • Wiltgen M, Tilz GP (2009) Homology modelling: a review about the method on hand of the diabetic antigen GAD 65 structure prediction. Wiener Medizinische Wochenschrift 159(5):112–125

    Article  Google Scholar 

  • Wittkop T, Emig D, Truss A, Albrecht M, Böcker S, Baumbach J (2011) Comprehensive cluster analysis with transitivity clustering. Nat Protoc 6(3):285–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Supplementary Materials

Below is the link to the electronic supplementary material.

5_LV444_152_WEAKLYSTRUCTURED_DATA_HOLZINGER_2013_14_lowres.pdf (PDF 11.1 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holzinger, A. (2014). Lecture 5 Semi-structured, Weakly Structured, and Unstructured Data. In: Biomedical Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-04528-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04528-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04527-6

  • Online ISBN: 978-3-319-04528-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics