Skip to main content

Vibration Suppression of a Flexible Parallel Kinematic Manipulator

  • Conference paper
  • First Online:
  • 1717 Accesses

Abstract

Robotics is moving towards applications that involve an interaction between the manipulator and the surrounding environment. From this the need to develop manipulators with compliant behavior arises in order to dynamically interact with the external environment. This can be obtained acting on both the software side, by mean of controller algorithm strategies, and the hardware side, modifying the robot structure, i.e. using flexible links. In this work a two dof parallel robot with two flexible links is analyzed. Kinematic and dynamic model of the robot are developed. The study of the compliance behavior of the manipulator is discussed in order to define an innovative trajectory planning strategy that allows the proper end-effector final positioning reducing vibrations. In this sense, input-shaping technique is used to define acceleration profile of the end-effector. Numerical simulations are then carried out to verify the goodness of the proposed method in reducing the vibrations in pick and place operations. Results show a positive response to the problem, encouraging future tests on the real manipulator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heinzmann J, Zelinsky A (2003) Quantitative safety guarantees for physical human-robot interaction. Int J Robot Res 22(7–8 Special issue):479–504

    Google Scholar 

  2. De Santis A, Siciliano B, De Luca A, Bicchi A (2008) An atlas of physical human-robot interaction. Mech Mach Theory 43(3):253–270

    Article  MATH  Google Scholar 

  3. Khatib O, Yokoi K, Brock O, Chang K, Casal A (1999) Robots in human environments: basic autonomous capabilities. Int J Robot Res 18(7):684–696

    Article  Google Scholar 

  4. Koeppe R, Engelhardt D, Hagenauer A, Heiligensetzer P, Kneifel B, Knipfer A, Stoddard K (2005) Robot-robot and human-robot cooperation in commercial robotics applications. In: Robotics research, Springer tracts in advanced robotics. pp 202–216. ISBN: 978-3-540-23214-8

    Google Scholar 

  5. Stemmer A, Albu-Schaffer A, Hirzinger G (2007) An analytical method for the planning of robust assembly tasks of complex shaped planar parts. IEEE Int Conf on Robot Autom. 317–323. ISSN: 1050-4729

    Google Scholar 

  6. Fabrizio Romanelli (2011) Advanced methods for robot-environment interaction towards an industrial robot aware of its volume. J Robot 2011(Article ID 389158):12 pp

    Google Scholar 

  7. ISO 10218-1:2006(E): Robots for industrial environments - safety requirements - part 1: robot, August 2006

    Google Scholar 

  8. Kenneth Salisbury J (1980) Active stiffness control of a manipulator in cartesian coordinates. Decision and Control Including the Symposium on Adaptive Processes 19:95–100

    Google Scholar 

  9. Hirzinger G, Albu-Schäffer A, Hahnle M, Schaefer I, Sporer N (2001) On a new generation of torque controlled light-weight robots. In: IEEE international conference on robotics and automation, proceedings 2001 ICRA. vol 4. pp 3356–3363. ISSN: 1050-4729

    Google Scholar 

  10. Trease BP, Moon Y, Kota S (2004) Design of large-displacement compliant joints. J Mech Design 127(4):788–798

    Article  Google Scholar 

  11. Alin Albu-Schffer, Gerd Hirzinger (2002) Cartesian impedance control techniques for torque controlled light-weight robots. IEEE Int Conf Robot Autom. 1:657–663

    Google Scholar 

  12. Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schaeffer A, Beyer A, Eiberger O, Haddadin S, Stemmer A, Grunwald G, Hirzinger G (2010) The KUKA-DLR Lightweight Robot arm - a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st international symposium on and 2010 6th German conference on robotics (ROBOTIK), 7–9 June 2010. pp 1,8

    Google Scholar 

  13. Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41(7):749–777

    Article  MATH  MathSciNet  Google Scholar 

  14. Serna MA, Bayo E (1990) Trajectory planning for flexible manipulators. IEEE Int Conf Robot Autom 2:910–915

    Article  Google Scholar 

  15. Akira A. (2009) Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Mech Mach Theory 44(9):1627–1639. ISSN: 0094-114X

    Google Scholar 

  16. Khorrami F (1994) Adaptive nonlinear control for end-effector position tracking of multi-link flexible manipulators with embedded active materials. Proc IEEE Conf Decis Control 1:103–108

    Google Scholar 

  17. Giberti H, Cinquemani S, Ambrosetti S (2012) Improving trajectory tracking performance of a 2 dof parallel kinematic manipulator with flexible links. In: Proceedings of the ASME 2012 11th biennial conference on engineering systems design and analysis, ESDA2012,, Nantes, 2–4 July 2012

    Google Scholar 

  18. Book Wayne J (1990) Modeling, design, and control of flexible manipulator arms: A tutorial review. Proc IEEE Conf Decis Control 2:500–506

    Google Scholar 

  19. Book Wayne John, Majette Mark (1983) Controller design for flexible distributed parameter mechanical arms via combined state space and frequency domain techniques. J Dyn Syst Meas Control 105(4):245–249

    Article  Google Scholar 

  20. Singhose W (2009) Command shaping for flexible systems: a review of the first 50 years. Int J Prec Eng Manuf 10(4):153–168

    Article  Google Scholar 

  21. Liu XJ, Wang J, Zheng HJ (2006) Optimum design of the 5R symmetrical parallel manipulator with a surrounded and good condition workspace. Robot Auton Syst 54:221–233

    Article  Google Scholar 

  22. Giberti H, Cinquemani S, Ambrosetti S (2012) 5R 2dof parallel kinematic manipulator - a multidisciplinary test case in mechatronics. Mechatronics. doi:10.1016/j.mechatronics.2012.09.006. ISSN: 0957-4158

    Google Scholar 

  23. Legnani G, Fassi I, Tosi D, Giberti H, Cinquemani S (2010) The point of isotropy and other properties of serial and parallel manipulators. Mech Mach Theory 45(10):1407–1423

    Article  MATH  Google Scholar 

  24. Chang Pyung Hun, Park Hyung-Soon (2005) Time-varying input shaping technique applied to vibration reduction of an industrial robot. Control Eng Prac 13(1):121–130

    Article  Google Scholar 

  25. Meckl PETERH, Seering WARRENP (1987) Reducing residual vibration in systems with time-varying resonances. In: Proceedings of the 1987 IEEE international conference on robotics and automation, vol 4. pp 1690–1695

    Google Scholar 

  26. Singhose WE, Singer NC (1996) Effects of input shaping on two-dimensional trajectory following. IEEE Trans Robot Autom 12(6):881–887. ISSN: 1042-296X

    Google Scholar 

  27. Mohamed Zaharudin, Tokhi Mohammad Osman (2004) Command shaping techniques for vibration control of a flexible robot manipulator. Mechatronics 14(1):69–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermes Giberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Giberti, H., Marinelli, C. (2014). Vibration Suppression of a Flexible Parallel Kinematic Manipulator. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04522-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04522-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04521-4

  • Online ISBN: 978-3-319-04522-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics