Skip to main content

A Stochastic Framework for Subspace Identification of a Strongly Nonlinear Aerospace Structure

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 2

Abstract

The present study exploits the maximum likelihood identification framework for deriving statistically-optimal models of nonlinear mechanical systems. The identification problem is formulated in the frequency domain, and model parameters are calculated by minimising a weighted least-squares cost function. Initial values of the model parameters are obtained by means of a nonlinear subspace algorithm. The complete identification methodology is first demonstrated on a Duffing oscillator, prior to being applied to a full-scale aerospace structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlquist JR, Carreno JM, Climent H, de Diego R, de Alba J (2010) Assessment of nonlinear structural response in A400M GVT. In: Proceedings of the international modal analysis conference XXVIII, Jacksonville, FL

    Google Scholar 

  2. Link M, Boeswald M, Laborde S, Weiland M, Calvi A (2011) Non-linear experimental modal analysis and application to satellite vibration test data. In: Proceedings of the 3rd international conference on computational methods in structural dynamics and earthquake engineering, Corfu

    Google Scholar 

  3. Noël JP, Renson L, Kerschen G, Peeters B, Manzato S, Debille J (2013) Nonlinear dynamics analysis of an F-16 aircraft using GVT data. In: Proceedings of the international forum on aeroelasticity and structural dynamics, Bristol

    Google Scholar 

  4. Kerschen G, Worden K, Vakakis AF, Golinval JC (2006) Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process 20:505–592

    Article  Google Scholar 

  5. Noël JP, Kerschen G (2013) Frequency-domain subspace identification for nonlinear mechanical systems. Mech Syst Signal Process 40: 701–717

    Article  Google Scholar 

  6. Noël JP, Marchesiello S, Kerschen G (2014) Subspace-based identification of a nonlinear spacecraft in the time and frequency domains. Mech Syst Signal Process 43:217–236

    Article  Google Scholar 

  7. Noël JP, Kerschen G, Foltête E, Cogan S (2013) Frequency-domain subspace identification of nonlinear mechanical systems - application to a solar array structure. In: Proceedings of the international modal analysis conference XXXI, Garden Grove, CA

    Google Scholar 

  8. Pintelon R, Schoukens J (2001) System identification: a frequency domain approach, 1st edn. IEEE Press, New York

    Book  Google Scholar 

  9. Paduart J, Lauwers L, Swevers J, Smolders K, Schoukens J, Pintelon R (2010) Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46:647–656

    Article  MATH  MathSciNet  Google Scholar 

  10. Adams DE, Allemang RJ (2000) A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback. Mech Syst Signal Process 14(4):637–656

    Article  Google Scholar 

  11. Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems, 1st edn. Wiley, New York

    MATH  Google Scholar 

  12. Schoukens J, Pintelon R, Rolain Y, Dobrowiecki T (2001) Frequency response function measurements in the presence of nonlinear distortions. Automatica 37:939–946

    Article  MATH  MathSciNet  Google Scholar 

  13. Van Overschee P, De Moor B (1996) Continuous-time frequency domain subspace system identification. Signal Process 52:179–194

    Article  MATH  Google Scholar 

  14. Yang ZJ, Sanada S (2000) Frequency domain subspace identification with the aid of the w-operator. Electr Eng Jpn 132(1):46–56

    Article  Google Scholar 

  15. Marchesiello S, Garibaldi L (2008) A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech Syst Signal Process 22:81–101

    Article  Google Scholar 

  16. Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  17. Schoukens J, Renneboog J (1986) Modeling of noise influence of the Fourier coefficients after a discrete Fourier transform. IEEE Trans Instrum Meas 35(3):278–286

    Article  Google Scholar 

  18. Sracic MW, Allen MS, Sumali H (2012) Identifying the modal properties of nonlinear structures using measured free response time histories from a scanning last Doppler vibrometer. In: Proceedings of the international modal analysis conference XIX, Jacksonville, FL

    Google Scholar 

  19. Giuliani P, Di Maio D, Schwingshackl CW, Martarelli M, Ewins DJ (2013) Six degrees of freedom measurement with continuous scanning laser doppler vibrometer. Mech Syst Signal Process 20(2):367–383

    Article  Google Scholar 

  20. Russell AG (2000) Thick skin, faceted, CFRP, monocoque tube structure for smallsats. In: Proceedings of the European conference on spacecraft structures, materials and mechanical testing, Noordwijk

    Google Scholar 

  21. Camarasa P, Kiryenko S (2009) Shock attenuation system for spacecraft and adaptor (SASSA). In: Proceedings of the European conference on spacecraft structures, materials and mechanical testing, Toulouse

    Google Scholar 

  22. Noël JP, Renson L, Kerschen G (2013) Experimental identification of the complex dynamics of a strongly nonlinear spacecraft structure. In: Proceedings of the ASME international design engineering technical conferences, Portland, OR

    Google Scholar 

  23. Vacher P, Jacquier B, Bucharles A (2010) Extension of the MAC criterion to complex modes. In: Proceedings of the international conference on noise and vibration engineering, Leuven

    Google Scholar 

Download references

Acknowledgements

The author J.P. Noël is a Research Fellow (FRIA fellowship) of the Fonds de la Recherche Scientifique—FNRS which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Noël .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Noël, J.P., Schoukens, J., Kerschen, G. (2014). A Stochastic Framework for Subspace Identification of a Strongly Nonlinear Aerospace Structure. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04522-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04522-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04521-4

  • Online ISBN: 978-3-319-04522-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics