Skip to main content

Surface Morphology and Nanoindentation of Low Temperature Hybrid Treated of AISI 316L

  • Chapter
  • First Online:
Recent Trends in Nanotechnology and Materials Science

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 660 Accesses

Abstract

This chapter measures surface mechanical properties of hybrid-treated layers at low temperature using nanoindentation method. The tools to characterize the treated layers including its roughness were performed by FESEM (Field Emission Scanning Electron Microscope) and USPM (Universal Scanning Probe Microscope). These hybrid-treated samples have shown an increase in hardness and elastic modulus compared to the untreated sample. Moreover, all treated samples have improvement on E/H ratio which shows a decrement to plastic deformation and degrade the disparity of properties, while maintaining the elastic range of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seal, S., Dahotre, N.B.: J. Met. 56(1), 34 (2004)

    Google Scholar 

  2. D. Melford: A Study of Surface Engineering in the UK. London, CEST (1989)

    Google Scholar 

  3. Bell, T.: Towards a universal surface engineering road map. Surf. Eng. 16(2), 89–90 (2000)

    Google Scholar 

  4. Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)

    Article  Google Scholar 

  5. LaFontaine, W.R., Paszkiet, C.A., Korhonen, M.A., Li, G.-Y.: J. Mater. Res. 6, 2084 (1991)

    Google Scholar 

  6. Vanlandingham, M.R., Dagastine, R.R., Eduljee, R.F., McCullough, R.L., Gillespie, J.W. Jr.: Compos. A Appl. Sci. Manuf. 30, 75–83 (1999)

    Google Scholar 

  7. Tangyungong, P., Thomas, R.C., Houston, J.E., Michalske, T.A., Crooks, R.M., Howard, A.J.: Phys. Rev. Lett. 71, 3319 (1993)

    Article  Google Scholar 

  8. Strojny, A., Gerberich, W.W.: Submitted to MRS bulletin. In: Proceedings from Spring MRS’98

    Google Scholar 

  9. Bhushan, B.: Introduction to Tribology, p. 560. Wiley, NY (2002)

    Google Scholar 

  10. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Google Scholar 

  11. Rolinski, E.: Effect of plasma nitriding temperature on surface properties of austenitic stainless steel. Surf. Eng. 3, 35–40 (1987)

    Article  Google Scholar 

  12. Ichii, K., Fujimura, K., Takase, T.: Structure of the ion-nitrided layer of 18-8 stainless steel. Tech. Rep. Kansai Univ. 27, 135–144 (1986)

    Google Scholar 

  13. Zhang, Z.L., Bell, T.: Structure and corrosion resistance of plasma nitrided stainless steel. Surf. Eng. 1, 131–136 (1985)

    Article  Google Scholar 

  14. Bell, T., Sun, Y.: Low temperature plasma nitriding and carburising of austenitic stainless steels. Heat Treat. Met. 29(3), 57–64 (2002)

    Google Scholar 

  15. Sun, Y., Li, X.Y., Bell, T.: X-ray diffraction characterisation of low temperature plasma nitrided austenitic stainless steels. J. Mater. Sci. 34, 4793–4802 (1999)

    Article  Google Scholar 

  16. Rie, K.-T., Broszeit, E.: Plasma diffusion treatment and duplex treatment—recent development and new applications. Surf. Coat. Technol. 76–77, 425–436 (1995)

    Google Scholar 

  17. Lewis, D.B., Leyland, A., Stevenson, P.R., Cawley, J., Matthews, A.: Metallurgical study of low temperature plasma carbon diffusion treatments for stainless steels. Surf. Coat. Technol. 60, 416–423 (1993)

    Article  Google Scholar 

  18. Sun, Y., Li, X.Y., Bell, T.: Low temperature plasma carburising of austenitic stainless steels for improved wear and corrosion resistance. Surf. Eng. 15, 49–54 (1999)

    Article  Google Scholar 

  19. Thaiwatthana, S., Li, X.Y., Dong, H., Bell, T.: Mechanical and chemical properties of low temperature plasma surface alloyed 316 austenitic stainless steel. Surf. Eng. 18, 140–144 (2002)

    Article  Google Scholar 

  20. Tsujikawa, M., Yoshida, D., Yamauchi, N., Ueda, N., Sone, T., Tanaka, S.: Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding. Surf. Coat. Technol. 200, 507–511 (2005)

    Article  Google Scholar 

  21. Sun, Y., Haruman, E.: Influence of processing conditions on structural characteristics of hybrid plasma surface alloyed austenitic stainless steel. Surf. Coat. Technol. 202, 4069–4075 (2008)

    Article  Google Scholar 

  22. Li, X.Y., Buhagiar, J., Dong, H.: Characterisation of dual S phase layer on plasma carbonitrided biomedical austenitic stainless steels. Surf. Eng. 26, 67–73 (2010)

    Article  Google Scholar 

  23. Stinville, J.C., Villechaise, P., Templier, C., Riviere, J.P., Drouet, M.: Plasma nitriding of 316L austenitic stainless steel: experimental investigation of fatigue life and surface evolution. Surf. Coat. Technol. 204, 1947–1951 (2010)

    Article  Google Scholar 

  24. Sun, Y.: Kinetics of low temperature plasma carburizing of austenitic stainless steels. J. Mater. Process. Technol. 168, 189–194 (2005)

    Article  Google Scholar 

  25. Tsujikawa, M., Noguchi, S., Yamauchi, N., Ueda, N., Sone, T.: Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel. Surf. Coat. Technol. 201, 5102–5107 (2007)

    Article  Google Scholar 

  26. Gemma, K., Obtruka, T., Fujiwara, T., Kwakami, M.: Prospects for rapid nitriding in high Cr austenitic alloys. In: Bell, T., Akamatsu, K. (eds.) Stainless Steel 2000, pp. 159–166. Maney Publishing, Leeds (2001)

    Google Scholar 

  27. Committee on gas carburizing, ASM.: Carburizing and Carbonitriding, 1st edn. Metals Park, American Society for Metals, Ohio (1977)

    Google Scholar 

  28. Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)

    Article  Google Scholar 

  29. Yamauchi, N., Ueda, N., Demizu, K., Okamoto, A., Sone, T., Oku, K., Kouda, T., Ichii, K., Akamatsu, K.: Stainless Steel 2000. In: Proceedings of International Current status seminar on thermochemical Surface Engineering Maney Publishing, Osaka, p. 247, (2001)

    Google Scholar 

  30. Oliver, W.C., Pharr, G.M.: J. Mater. Res. 7, 1564 (1992)

    Article  Google Scholar 

  31. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2004)

    Google Scholar 

  32. Ulm, F.J., Vandamme, M., Bobko, C., Alberto Ortega, J., Tai, K., Ortiz, C.: J Am. Ceram. Soc. 90, 2677 (2007)

    Google Scholar 

  33. Randall, N.X., Vandamme, M., Ulm, F.J.: J. Mater. Res. 24, 679 (2009)

    Article  Google Scholar 

  34. Tromas, C., Arnoux, M.: X. Milhet. Scripta Mater. 66, 77 (2012)

    Article  Google Scholar 

  35. Li, X.Y., Buhagiar, J., Dong, H.: Characterisation of dual S phase layer on plasma carbonitrided biomedical austenitic stainless steels. Surf. Eng. 26, 67–73 (2010)

    Article  Google Scholar 

  36. Michalski, J., Tacikowski, J., Nakonieczny, A., Wach, P.: Nitriding without the compound layer and with continuous in-process variation of the nitriding potential. Int. J. Microstruct. Mater. Prop. 2(1) 45–53 (2007)

    Google Scholar 

  37. Sun, Y., Haruman, E., Malik, H., Sutjipto, A.G.E., Mridha, S., Widi, K.: Low temperature nitriding of austenitic stainless steel. Solid State Phenom. 118, 125–130 (2006)

    Article  Google Scholar 

  38. Leyland, A., Matthews, A.: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2), 1–11 (2000)

    Article  Google Scholar 

  39. Leyland, A., Matthews, A.: Design criteria for wear-resistant nanostructured and glassy metal coatings. Surf. Coat. Technol. 177–178, 317–324 (2004)

    Article  Google Scholar 

  40. Mridha, Shahjahan: Gas nitriding of En40B steel with highest growth rate of the case and reduced white layer formation. Int. J. Microstruct. Mater. Prop. 2(1), 54–63 (2007)

    Google Scholar 

  41. Oumarou, N., Jehl, J-Ph., Kouitat, R., Stempfle, Ph.: On the variation of mechanical parameters obtained from spherical depth sensing indentation. Int. J. Surf. Sci. Eng. 4(4/5/6), 416–428 (2010)

    Google Scholar 

  42. Triwiyanto, Askar, et al.: Microstructure and nanoindentation characterization of low temperature hybrid treated layer on austenitic stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 46, 012043 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude to Universiti Teknologi PETRONAS for supporting this research under STIRF Grant No. 49/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askar Triwiyanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Triwiyanto, A., Husain, P., Anggraeni, S., Ismail, M. (2014). Surface Morphology and Nanoindentation of Low Temperature Hybrid Treated of AISI 316L. In: Gaol, F., Webb, J. (eds) Recent Trends in Nanotechnology and Materials Science. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-04516-0_8

Download citation

Publish with us

Policies and ethics