Skip to main content

Enhancement of Nanocomposite for Humidity Sensor Application

  • Chapter
  • First Online:
Recent Trends in Nanotechnology and Materials Science

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter investigates the improvement of nanocomposited ZnO/SnO2 that was prepared on ZnO coated glass using thermal chemical vapor deposition (CVD). The sensor properties were characterized using current-voltage (IV) measurement (Keithley 2400). The results analyzed were for ZnO agglomerate nanoparticle, SnO2 nanorod, and ZnO/SnO2 composite nanorods. The structural properties were characterized using field emission scanning electron microscopy (FESEM) (JEOL JSM 6701F). The thins films were tested using two-point probe and the sensors characterized using I–V measurement (Keithley 2400) in a clean humidity chamber (ESPEC SH-261). The chamber was set at the same room temperature (25 °C) with percent relative humidity (RH%) varied in the range of 40–90%RH. ZnO/SnO2 composite nanorods performed the highest sensitivity with 265 ratio compared to the ZnO agglomerate nanoparticle and SnO2 nanorod. The response and recovery time for ZnO/SnO2 composite nanorods were 227 s and 34 s respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelino, M., Cantalini, C., Faccio, M.: Principles and applications of ceramic humidity sensors. Act. Passiv. Elect. Compon. 16 (1994)

    Google Scholar 

  2. Shimizu, Y., Yamazoe, N.: Humidity Sensors: Principles and Applications. Sens. Actuators 10, 379–398 (1986)

    Google Scholar 

  3. Regtien, P.P.L.: Humidity sensors. Meas. Sci. Technol. 23(1) (2012)

    Google Scholar 

  4. Z. Chen CL (2005). Humidity sensors: a review of materials and mechanisms, Sens

    Google Scholar 

  5. Z.L. Wang ZCK (1998) Functional and Smart Materials Structural Evolution and Structure Analysis

    Google Scholar 

  6. Wang, C., Wang, X., Zhao, J., Mai, B., Sheng, G., Peng, P., Fu, J.: Synthesis, characterization and phtocatalytic property of nano-sized Zn2SnO4. J. Mater. Sci. 37, 2898–2996, (2002)

    Google Scholar 

  7. Young, D.L., Williamson, D.L., Coutts, T.J.: Structural characterization of zinc stannate thin films. J. Appl. Phys. 91, 1464 (2002)

    Google Scholar 

  8. Stambolova, I., Konstantinov, K., Kovacheva, D., Peshev, P., Donchev, T.: Spray pyrolysis preparation and humidity sensing characteristics of spinel zinc Stan-nate thin films. J. Solid State Chem. 128, 5 (1997)

    Google Scholar 

  9. Zhu, C.L., Chen, Y.J., Wang, R.X., Wang, L.J., Cao, M.S., Shi, X.L.: Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens. Actuat. 140, 185–189 (2009)

    Google Scholar 

  10. Yu GJXZD: Effect of surface morphology on the mechanical properties of ZnO nanowires (2010)

    Google Scholar 

  11. Chengxiang Wang, L.Y., Luyuan, Z., Dong, X., Rui, G.: Sensors. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors (2010)

    Google Scholar 

  12. De Lacy Costello, B.P.J., Ewen, R.J., Jones, P.R.H., Ratcliffe, N.M., Wat, R.K.M.: A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide. Sens. Actuat. B 61, 199–207 (1999)

    Google Scholar 

  13. Yu, J.H., Choi, G.M.: Electrical and CO gas sensing properties of ZnO–SnO2 composites. Sens. Actuat. B. 52, 251–256 (1998)

    Google Scholar 

  14. Moon, W.J., Yu, J.H., Choi, G.M.: Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens. Actuators B 80, 21–27 (2001)

    Google Scholar 

  15. Zhang YSSaTS: Preparation, structure and gas-sensing properties of ultramicro ZnSnO3 powder. Sensors and Actuators B 12, 5–9 (1993)

    Google Scholar 

  16. Wagh LAP, M.S., Seth, T., Amalnerkar, D.P.: Surface cupricated SnO2–ZnO thick film as a H2S gas sensor. Mater. Chem. Phys. 84, 228–233 (2004)

    Google Scholar 

  17. Jamil, H., Batool, S.S., Imran, Z., Usman, M., Rafiq, M.A., Willander, M., Hassan, M.M.: Electrospun titanium dioxide nanofiber humidity sensors with high sensitivity. Ceram. Int. 38(3), 2437–2441 (2012)

    Article  Google Scholar 

  18. Kuang, Q., Lao, C., Wang, Z.L., Xie, Z., Zheng, L.: High-sensitivity humidity sensor Based ON a single SnO2 nanowire. J. Am. Chem. Soc. 129(19), 6070–6071 (2007). doi:10.1021/ja070788m

    Article  Google Scholar 

  19. Song, X., Qi, Q., Zhang, T., Wang, C.: A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B: Chem 138(1), 368–373 (2009)

    Article  Google Scholar 

  20. Feder, J., Russell, K., Lothe, J., Pound, G.: Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15(57), 111–178 (1966)

    Article  Google Scholar 

  21. Oxtoby, D.W.: Homogeneous nucleation: theory and experiment. J. Phys.: Condens. Matter 4(38), 7627 (1992)

    Google Scholar 

  22. Salehi, A.: A highly sensitive self heated SnO2 carbon monoxide sensor. Sens. Actuators B: Chem. 96(1–2), 88–93

    Google Scholar 

  23. Kim, H., Sathaye, S.D., Hwang, Y.K., Jhung, S.H., Hwang, J., Kwon, S.H., Park, S., Chang, J.: Humidity sensing properties of nanoporous TiO2–SnO2 ceramic sensors. Bull. Korean Chem. Soc. 26(11), 1881 (2005)

    Google Scholar 

  24. Wang, W., Tian, Y., Li, X., Wang, X., He, H., Xu, Y., He, C.: Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres. Appl. Surf. Sci. (2012)

    Google Scholar 

  25. Yuan, Q., Li, N., Tu, J., Li, X., Wang, R., Zhang, T., Shao, C.: Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite. Sens. Actuators B: Chem. 149(2), 413–419 (2010)

    Article  Google Scholar 

  26. Wang, L., Zhang, X., Liao, X., Yang, W.: A simple method to synthesize single-crystalline Zn2 SnO4 (ZTO) nanowires and their photoluminescence properties. Nanotechnology 16(12), 2928 (2005)

    Article  Google Scholar 

  27. Jiang, Q., Li, Y., Du, G., Liu, Y., Zhao, H.: A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method. Mater. Lett. 94, 100–103 (2013)

    Google Scholar 

  28. Wang, Y.-L., Guo, M., Zhang, M., Wang, X.-D.: Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. CrystEngComm 12(12), 4024–4027 (2010). doi:10.1039/c0ce00201a

    Article  Google Scholar 

  29. Asokan, K., Park, J., Choi, S.-W., Kim, S.: Nanocomposite ZnO–SnO2 nanofibers synthesized by electrospinning method. Nanoscale Res. Lett. 5(4), 747–752 (2010). doi:10.1007/s11671-010-9552-y

    Article  Google Scholar 

  30. Kannan, P.K., Saraswathi, R., Rayappan, J.B.B.: A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film. Sens. Actuators A 164(1–2), 8–14 (2010)

    Google Scholar 

  31. Wang, Z., Huang, B., Liu, X., Qin, X., Zhang, X., Wei, J., Wang, P., Yao, S., Zhang, Q., Jing, X.: Photoluminescence studies from ZnO nanorod arrays synthesized by hydrothermal method with polyvinyl alcohol as surfactant. Mater. Lett. 62(17), 2637–2639 (2008)

    Article  Google Scholar 

  32. Parthibavarman, M., Hariharan, V., Sekar, C.: High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. 31, 840–844 (2011)

    Google Scholar 

  33. Qin, K., Lao, C., Zhong Lin, W., Xie, Z., Lansun, Z.: High-sensitivity humidity sensor based on a single SnO2 nanowire (2007)

    Google Scholar 

  34. Md Sin, N.D., Mamat, M.H., Musa, M.Z., Abdul Aziz, A., Rusop, M.: Effect of growth duration to the electrical properties of Zn doped SnO2 thin film toward humidity sensor application (2012)

    Google Scholar 

  35. Qi Qia, T.Z., Yi, Z., Haibin, Y.: Sensors and actuators humidity sensing properties of KCl-doped Cu. Sens. Actuators, B 137, 21–26 (2009)

    Google Scholar 

  36. Gu, L., Zheng, K., Zhou, Y., Li, J., Mo, X., Patzke, G.R., Chen, G.: Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B: Chem. 159(1), 1–7 (2011)

    Article  Google Scholar 

  37. Song, X., Liu, L.: Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sens. Actuators, A 154(1), 175–179 (2009)

    Article  Google Scholar 

  38. Mamat, M.H., Khusaimi, Z., Musa, M.Z., Malek, M.F., Rusop, M.: Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods. Sens. Actuators, A 171(2), 241–247 (2011)

    Article  Google Scholar 

  39. Xu, L., Wang, R., Xiao, Q., Zhang, D., Liu, Y.: Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chin. Phys. Lett. 28, 070702 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Md Sin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Md Sin, N.D., Tahar, M.F., Mamat, M.H., Rusop, M. (2014). Enhancement of Nanocomposite for Humidity Sensor Application. In: Gaol, F., Webb, J. (eds) Recent Trends in Nanotechnology and Materials Science. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-04516-0_2

Download citation

Publish with us

Policies and ethics