Skip to main content

Mechanical Testing of Ceramics

  • Chapter
  • First Online:
Mechanical Properties of Ceramics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 213))

Abstract

This chapter considers the most common mechanical testing methods which are usually expected to be performed by students entering the first time into a lab. Tensile test-related parameters are evaluated. Very popular tests of ceramics are the various hardness tests (for example Vickers hardness test), which is not only a cost saving test, but also requires shorter times, since no specific specimen preparation, except of a smooth (often polished) surface is required. On small size specimens, Knoop hardness test is the general approach to obtain hardness data. Another accepted method of evaluating the mechanical properties of a ceramic is by a bending (flexural) test. The tests can be performed by three or four point bending tests. Compression tests are more popular than tension tests, since they tend to close pores, cracks and other flaws resulting in higher test results than by those obtained by tension, which tends to open rather than close cracks and microcracks. Toughness is an important criterion in ceramic properties (mechanical) evaluation. Because of the brittle nature of ceramics, special instrumented Charpy Impact Test machines were developed, primarily to evaluate the dynamic toughness of such materials. Creep and Fatigue tests are not included in this chapter and they will be evaluated in separate chapters. Because of the large scatter in the experimental results, Weibull statistical distribution is applied to obtain a mean value of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies JR (ed) (2004) Tensile testing, 2nd edn. ASM International, Materials Park, Ohio (#05106G)

    Google Scholar 

  2. Gong J (2003) J Mater Sci 38:2541

    Article  Google Scholar 

  3. Green DJ (1998) An introduction to the mechanical properties of ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Hague B (1959) An introduction to vector analysis. Methuen & Co. LTD, London

    Google Scholar 

  5. Hodgkinson JM (2000) Mechanical Testing of Advanced Fibre Composites. Woodhead Publishing, Abingdon Hall

    Book  Google Scholar 

  6. Hunt RE (2002) Lecture notes and handouts. University of Cambridge, Cambridge

    Google Scholar 

  7. Khadar Vali S, Ravinder Reddy P, Ram Reddy P (2012) International Journal of Computational Engineering Research, 2, 1165

    Google Scholar 

  8. Majic FM, Curkovic L, Coric D (2011) Mat-wiss u Werkstofftech 42(3):S313–S319

    Google Scholar 

  9. Matsumoto T, Nose T, Nagata Y, Kawashima K, Yamada T, Nakano H, Nagai S (2001) J Am Cer Soc 84:1521

    Article  Google Scholar 

  10. Muntz D, Fett T (2001) Ceramics: mechanical properties, failure behavior, materials selection. Springer, New York

    Google Scholar 

  11. NIST/SEMATECH e-Handbook of Statistical Methods (2012) http://www.itl.nist.gov/div898/handbook/, April 2012, 1.3.6.6.8. Weibull Distribution

  12. Nye JF (1957) Physical properties of crystals. Oxford University Press, New York

    MATH  Google Scholar 

  13. Pelleg J (2012) Mehanical properties of materials. Springer, Dordrecht

    Google Scholar 

  14. Pelleg J (2013) Mechanical properties of materials. Springer, Dordrecht, pp 36–50

    Book  Google Scholar 

  15. Polakowski NH, Ripling EJ (1966) Strength and structure of engineering materials. Prentice-Hall, Englewood

    Google Scholar 

  16. Scruby CB, Drain LE (1990). Laser Ultrasonic Technologies and Applications, CRC Press

    Google Scholar 

  17. Quinn JB, Quinn GD (1997) Indentation brittleness of ceramics: a fresh approach. J Mater Sci 32:4331

    Article  MathSciNet  Google Scholar 

  18. Rice RW (2000) Mechanical properties of ceramics and composites: grain and particle effects. CRC Press, New York

    Google Scholar 

  19. Timoshenko S (1940) Strength of materials. D. Van Nostrand Company, New York

    Google Scholar 

  20. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics. Wiley, Hoboken

    Google Scholar 

Further References

  1. Adler SB (2001) J Am Ceram Soc 84:2117

    Article  Google Scholar 

  2. Aigbodion VS, Agunsoye JO, Kalu V, Asuke F, Ola S (2010) J Miner Mater Charact Eng 9:527

    Google Scholar 

  3. Bruck HA, Christman T, Rosakis AJ, Johnson WL (1994) Scr Metall Mater 30:429

    Article  Google Scholar 

  4. Buresch FE (1978) ASTM STP 678:151

    Google Scholar 

  5. Coimbra D, Greenwood R, Kendall K (2000) J Mater Sci 35:3341

    Article  Google Scholar 

  6. Davis JR (ed) (2004) Tensile testing ASM international. Materials Park, Ohio (ASTM C 1273)

    Google Scholar 

  7. Domínguez-Rodríguez A, Gómez-García D, Zapata-Solvas E, Shen JZ, Chaim R (2007) Scripta Materialia 56, 89

    Google Scholar 

  8. Gong J, Guan Z (2001) Mater Lett 47:140

    Article  Google Scholar 

  9. Karch J, Birringer R, Gleiter H (1987) Nature 330:556

    Article  Google Scholar 

  10. Kikuchi M (2011) Bioceramics Dev Appl 1:1

    Article  Google Scholar 

  11. Kobayashi T, Niinomi M, Koide Y, Matsunuma K (1986) Trans Jpn Inst Met 27:775

    Article  Google Scholar 

  12. Kobayashi T, Matsunuma K, Ikawa H, Motoyoshi K (1988) Eng Fract Mech 31:873

    Article  Google Scholar 

  13. Lee MY, Brannon RM, Bronowski DR (2005) SAND 2004–6005 Unlimited Release February 2005

    Google Scholar 

  14. Li H, Bradt RC (1992) Diam Relat Mater 1:1161

    Article  Google Scholar 

  15. Li H, Bradt RC (1993) J Mater Sci 28:917

    Article  Google Scholar 

  16. Maria Berkes Maros (2009) Nikoletta Kaulics Helmeczi, Péter Araté and Csaba Balázsi. Key Eng Mater 409:338

    Article  Google Scholar 

  17. Marschall J, Erlich DC, Manning H, Duppler W, Ellerby D, Gasch M, Mmat J (2004) Science 39:5959

    Google Scholar 

  18. Nakano H, Nagai S (1988) Ultrasonics 26:256

    Article  Google Scholar 

  19. Naplocha K, Janus A, Kaczmar JW, Samsonowicz Z (2000) J Mater Process Technol 106:119

    Article  Google Scholar 

  20. Nino A, Tanaka A, Sugiyama S, Taimatsu H (2010) Materialstransactions. Jpn Inst Met 51:1621

    Google Scholar 

  21. Robinson JN (1971) J Phys E Sci Instrum 5:171

    Article  Google Scholar 

  22. Sakaguchi S, Murayama N, Kodama Y, Wakai F (1991) J Mater Sci Lett 10:282

    Google Scholar 

  23. Seshadri SG, Chia K-Y (1987) J Am Ceram Soc 70, C-242

    Google Scholar 

  24. Shimada M, Matsushita K, Kuratani S, Okamoto T, Koizumi M, Tsukuma K, Tsukidate T (1984) J Am Ceram Soc 67:C-23

    Google Scholar 

  25. Shimazu T, Miura M, Isu N, Ogawa T, Ota K, Maeda H, Ishida EH (2008) Mater Sci Eng A 487:340

    Article  Google Scholar 

  26. Wang XD, Bednarcik J, Saksl K, Franz H, Cao QP, Jiang JZ (2007) Appl Phys Lett 91:081913

    Article  Google Scholar 

  27. Weibull W (1939) A statistical theory of the strength of materials. Royal Institute for Engineering Research, Stockholm, p 151

    Google Scholar 

  28. Weibull W (1951) J Appl Mech 18:293

    MATH  Google Scholar 

  29. Williams JG (1980) Met Sci 345

    Google Scholar 

  30. Yao H, Ouyang L, Ching W-Y (2007) J Am Ceram Soc 90:3194

    Article  Google Scholar 

Special References

  1. Bernal JD (1949) The physical basis of life. Proc R Soc Lond 357A:537

    Google Scholar 

  2. Ferris JP (2005) Catalysis and prebiotic synthesis. Mol Geomicrobiol 59:187

    Google Scholar 

  3. Fraser DG, Fitz D, Jakschitz T, Rode BM (2011) Phys Chem Chem Phys 13:83

    Google Scholar 

  4. University of Oxford (2011) Did clay mould life’s origins by Cath Harris, 01 Apr 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Pelleg .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelleg, J. (2014). Mechanical Testing of Ceramics. In: Mechanical Properties of Ceramics. Solid Mechanics and Its Applications, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-04492-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04492-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04491-0

  • Online ISBN: 978-3-319-04492-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics