Skip to main content

Abstract

Understanding and managing risks caused by extreme events is one of the most demanding problems of our society. We consider this topic from a statistical point of view and present some of the probabilistic and statistical theory, which was developed to model and quantify extreme events. By the very nature of an extreme event there will never be enough data to predict a future risk in the classical statistical sense. However, a rather clever probabilistic theory provides us with model classes relevant for the assessment of extreme events. Moreover, specific statistical methods allow for the prediction of rare events, even outside the range of previous observations. We will present the basic theory and relevant examples from climatology (climate change), insurance (return periods of large claims) and finance (portfolio losses and Value-at-Risk estimation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Selected Bibliography

  1. J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels, D. De Waal, C. Ferro, Statistics of Extremes: Theory and Applications (Wiley, New York, 2004)

    Book  Google Scholar 

  2. P. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  3. S.G. Coles, An Introduction to Statistical Modeling of Extreme Values (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  4. P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  5. G.C. Hegerl, H. Hanlon, C. Beierkuhnlein, Elusive extremes. Nat. Geosci. 4, 143–144 (2011)

    Google Scholar 

  6. IPCC 2007, Climate change 2007: the physical science basis, in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  7. A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques, and Tools (Princeton University Press, Princeton, 2005)

    Google Scholar 

  8. A. Menzel, H. Seifert, N. Estrella, Effects of recent warm and cold spells on European plant phenology. Int. J. Biometeorol. 55, 921–932 (2011)

    Article  Google Scholar 

  9. R.-D. Reiss, M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, 2nd edn. (Birkhäuser, Basel, 2001)

    Google Scholar 

  10. R.L. Smith, Estimating tails of probability distributions. Ann. Stat. 15, 1174–1207 (1987)

    Article  MATH  Google Scholar 

  11. A. Stephenson, E. Gilleland, Software for the analysis of extreme events: the current state and future directions. Extremes 8, 87–109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Additional Literature

  1. T.G. Andersen, R.A. Davis, J.-P. Kreiss, T. Mikosch, Handbook of Financial Time Series (Springer, New York, 2009)

    MATH  Google Scholar 

  2. A.A. Balkema, L. de Haan, Residual life time at great age. Ann. Probab. 2, 792–804 (1974)

    Article  MATH  Google Scholar 

  3. K.F. Bannör, M. Scherer, Model risk and uncertainty—illustrated with examples from mathematical finance, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

  4. Basel Committee on Banking Supervision, Basel III: a global regulatory framework for more resilient banks and banking systems (2011). Revised June 2011

    Google Scholar 

  5. Basel Committee on Banking Supervision, Revisions to the Basel II market risk framework (2011). Updated as of 31 December 2010

    Google Scholar 

  6. M. Beniston, H.F. Diaz, The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob. Planet. Change 44, 73–81 (2004)

    Article  Google Scholar 

  7. C. Bernhardt, C. Klüppelberg, T. Meyer-Brandis, Estimating high quantiles for electricity prices by stable linear models. J. Energy Mark. 1, 3–19 (2008)

    Google Scholar 

  8. F. Biagini, T. Meyer-Brandis, G. Svindland, The mathematical concept of measuring risk, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

  9. K. Böcker, C. Klüppelberg, Operational VaR: a closed-form approximation. Risk 12, 90–93 (2005)

    Google Scholar 

  10. E. Brodin, C. Klüppelberg, Extreme value theory in finance, in Encyclopedia of Quantitative Risk Assessment, ed. by B. Everitt, E. Melnick (Wiley, Chichester, 2007)

    Google Scholar 

  11. S.J. Brown, J. Caesar, C.A.T. Ferro, Global change in extreme daily temperature since 1950. J. Geophys. Res. 113, D05115 (2008)

    Google Scholar 

  12. R. Cont, Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance 1, 223–236 (2001)

    Article  Google Scholar 

  13. J. Danielsson, P. Embrechts, C. Goodhart, C. Keating, F. Muennich, O. Renault, H.S. Shin, An Academic Response to Basel II. Financial Markets Group, London School of Economics (2001)

    Google Scholar 

  14. R.A. Davis, C. Klüppelberg, C. Steinkohl, Max-stable processes for modelling extremes observed in space and time. J. Korean Stat. Soc. 42(3), 399–414 (2013)

    Article  Google Scholar 

  15. R.A. Davis, C. Klüppelberg, C. Steinkohl, Statistical inference for max-stable processes in space and time. J. R. Stat. Soc., Ser. B 75(5), 791–819 (2013)

    Article  MathSciNet  Google Scholar 

  16. S. Emmer, C. Klüppelberg, M. Trüstedt, VaR – ein Mass für das extreme Risiko. Solutions 2, 53–63 (1998)

    Google Scholar 

  17. V. Fasen, Extremes of continuous-time processes, in Handbook of Financial Time Series, ed. by T.G. Andersen, R.A. Davis, J.-P. Kreiss, T. Mikosch (Springer, Berlin, 2009), pp. 653–667

    Chapter  Google Scholar 

  18. V. Fasen, C. Klüppelberg, Modellieren und Quantifizieren von extremen Risiken, in Facettenreiche Mathematik, ed. by K. Wendland, A. Werner (Vieweg/Teubner, Wiesbaden, 2011)

    Google Scholar 

  19. V. Fasen, C. Klüppelberg, M. Schlather, High-level dependence in time series models. Extremes 13, 1–33 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. R.A. Fisher, L.H.C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)

    Article  MATH  Google Scholar 

  21. C.F. Gauß, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solum Ambientium (Hamburgi Sumptibus F. Perthes et I.H. Besser, Hamburg, 1809)

    Google Scholar 

  22. P. Glasserman, Monte Carlo Methods in Financial Engineering (Springer, New York, 2004)

    MATH  Google Scholar 

  23. S. Haug, C. Klüppelberg, L. Peng, Statistical models and methods for dependent insurance data; invited discussion paper. J. Korean Stat. Soc. 40, 125–139 (2011)

    Article  Google Scholar 

  24. IPCC 1990, Climate change: the IPCC scientific assessment, in Report Prepared for IPCC by Working Group 1, ed. by J.T. Houghton, G.J. Jenkins, J.J. Ephraums (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  25. R.W. Katz, Statistics of extremes in climate change. Clim. Change 71–76, 100 (2010)

    Google Scholar 

  26. C. Klüppelberg, R. Stelzer, Dealing with dependent risks, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

  27. R. Korn, E. Korn, G. Kroisandt, Monte Carlo Methods and Models in Finance and Insurance. Financial Mathematics Series (Chapman & Hall/CRC Press, London/Boca Raton, 2010)

    Book  MATH  Google Scholar 

  28. J. Pickands, Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Poisson, Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile Précédées des Règles Générales du Calcul des Probabilités (Bachelier, Imprimeur-Libraire, Paris, 1837)

    Google Scholar 

  30. S.I. Resnick, Extreme Values, Regular Variation, and Point Processes (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  31. R.L. Smith, Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion). Stat. Sci. 4, 367–393 (1989)

    Article  MATH  Google Scholar 

  32. D.B. Stephenson, Definition, diagnosis, and origin of extreme weather and climate events, in Climate Extremes and Society, ed. by R. Murnane, H. Diaz (Cambridge University Press, Cambridge, 2008), pp. 11–23

    Chapter  Google Scholar 

  33. G.-R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesani, T.J. Beebee, J.-M. Fromentin, Ecological responses to recent climate change. Nature 416, 389–395 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Klüppelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fasen, V., Klüppelberg, C., Menzel, A. (2014). Quantifying Extreme Risks. In: Klüppelberg, C., Straub, D., Welpe, I. (eds) Risk - A Multidisciplinary Introduction. Springer, Cham. https://doi.org/10.1007/978-3-319-04486-6_6

Download citation

Publish with us

Policies and ethics