Skip to main content

Abstract

With rapid progression of computing and other technological advances, the practice of modern medicine has moved from primarily anecdotal to largely quantitative. With due credit to the Internet and the new cyber-society, individuals have taken a more active role in the decision-making process concerning their health, from deciding whether or not to get screened for a disease to which treatment is best for their specific clinical profile. Treating physicians are more connected with latest medical breakthroughs through vast dissemination via the Internet. Statistical prediction models assembled on large well-designed cohorts, multiply validated and easily accessible through online calculators play a role in translating basic science results to implementation in the community for public health benefit. This chapter describes the risk model building process that forms the basis of modern medical decision-making, from statistical estimation to validation and implementation on the Internet. The early diagnosis of cancer is used as the context to illustrate principles, though the concepts immediately transcend to other disciplines as concluding examples in forestry and finance will show.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Selected Bibliography

  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. D.P. Ankerst, J. Groskopf, J.R. Day et al., Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J. Urol. 180, 1303–1308 (2008)

    Article  Google Scholar 

  3. D.P. Ankerst, T. Koniarski, Y. Liang et al., Updating risk prediction tools: a case study in prostate cancer. Biom. J. 54, 127–142 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. C.B. Begg, R.A. Greenes, Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39, 207–215 (1983)

    Article  MathSciNet  Google Scholar 

  5. V. Cavadas, L. Osório, F. Sabell, F. Teves, F. Branco, M. Silva-Ramos, Prostate cancer prevention trial and European randomized study of screening for prostate cancer risk calculators: a performance comparison in a contemporary screened cohort. Eur. Urol. 58, 551–558 (2010)

    Article  Google Scholar 

  6. D.R. Cox, Two further applications of a model for binary regression. Biometrika 45, 562–565 (1958)

    MATH  Google Scholar 

  7. S.J. Eyre, D.P. Ankerst, J.T. Wei et al., Validation in a multiple urology practice setting of the prostate cancer prevention trial calculator for predicting prostate cancer detection. J. Urol. 182, 2653–2658 (2009)

    Article  Google Scholar 

  8. D.J. Hernandez, M. Han, E.B. Humphreys et al., Predicting the outcome of prostate biopsy: comparison of a novel logistic regression-based model, the prostate cancer risk calculator, and prostate-specific antigen level alone. BJU Int. 103, 609–614 (2009)

    Article  Google Scholar 

  9. K.J.M. Janssen, A.R.T. Donders, F.E. Harrell Jr. et al., Missing covariate data in medical research: to impute is better than to ignore. J. Clin. Epidemiol. 63, 721–727 (2010)

    Article  Google Scholar 

  10. A. Jemal, R. Siegel, J. Xu, E. Ward, Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010)

    Article  Google Scholar 

  11. S. Lemeshow, D.W. Hosmer Jr., A review of goodness of fit statistics for use in the development of logistic regression models. Am. J. Epidemiol. 115, 92–106 (1982)

    Google Scholar 

  12. Y. Liang, D.P. Ankerst, M. Sanchez, R.J. Leach, I.M. Thompson, Body mass index adjusted prostate-specific antigen and its application for prostate cancer screening. Urology 76, 1268.e1–1268.e6 (2010)

    Google Scholar 

  13. M.E. Mille, S.L. Hui, W.M. Tierney, Validation techniques for logistic regression models. Stat. Med. 10, 1213–1226 (1991)

    Article  Google Scholar 

  14. N.J. Nagelkerke, A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. C.T. Nguyen, C. Yu, A. Moussa, M.W. Kattan, J.S. Jones, Performance of prostate cancer prevention trial risk calculator in a contemporary cohort screened for prostate cancer and diagnosed by extended prostate biopsy. J. Urol. 183, 529–533 (2010)

    Article  Google Scholar 

  16. D.J. Parekh, D.P. Ankerst, B.A. Higgins et al., External validation of the prostate cancer prevention trial risk calculator in a screened population. Urology 68, 1153–1155 (2006)

    Article  Google Scholar 

  17. M.J. Pencina, R.B. D’Agostino Sr., R.B. D’Agostino Jr., R.S. Vasan, Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat. Med. 27, 157–172 (2008)

    Article  MathSciNet  Google Scholar 

  18. S. Perdonà, V. Cavadas, G.D. Lorenzo et al., Prostate cancer detection in the grey area of prostate-specific antigen below 10 ng/ml: head-to-head comparison of the updated PCPT calculator and Chun’s nomogram, two risk estimators incorporating prostate cancer antigen 3. Eur. Urol. 59, e1–e4 (2011)

    Article  Google Scholar 

  19. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  20. E.W. Steyerberg, Clinical Prediction Models (Springer, New York, 2010)

    Google Scholar 

  21. E.W. Steyerberg, A.J. Vickers, N.R. Cook et al., Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21, 128–138 (2010)

    Article  Google Scholar 

  22. J.A. Swets, R.M. Pickett, Evaluation of Diagnostic Systems: methods from Signal Detection Theory (Academic Press, New York, 1982)

    Google Scholar 

  23. I.M. Thompson, D.P. Ankerst, C. Chi et al., The operating characteristics of prostate-specific antigen in a population with initial PSA of 3.0 ng/ml or lower. JAMA 294, 66–70 (2005)

    Article  Google Scholar 

  24. I.M. Thompson, D.P. Ankerst, C. Chi et al., Assessing prostate cancer risk: results from the prostate cancer prevention trial. J. Natl. Cancer Inst. 98, 529–534 (2006)

    Article  Google Scholar 

  25. I.M. Thompson, D.P. Ankerst, C. Chi et al., Prediction of prostate cancer for patients receiving finasteride: results from the prostate cancer prevention trial. J. Clin. Oncol. 25, 3076–3081 (2007)

    Article  Google Scholar 

  26. S. van Buuren, Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. A.J. Vickers, E.B. Elkin, Decision curve analysis: a novel method for evaluating prediction models. Med. Decis. Mak. 26, 565–574 (2006)

    Article  Google Scholar 

  28. J.F. Yates, External correspondence: decomposition of the mean probability score. Organ. Behav. Hum. Perform. 30, 132–156 (1982)

    Article  Google Scholar 

Additional Literature

  1. D.P. Ankerst, J. Groskopf, J.R. Day et al., Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J. Urol. 180, 1303–1308 (2008)

    Article  Google Scholar 

  2. D.P. Ankerst, T. Koniarski, Y. Liang et al., Updating risk prediction tools: a case study in prostate cancer. Biom. J. 54, 127–142 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Boeck, J. Dieler, P. Biber, H. Pretzsch, D.P. Ankerst, Predicting tree mortality for European beech in southern Germany using spatially-explicit competition indices. For. Sci. (in press)

    Google Scholar 

  4. H. Pretzsch, P. Biber, J. Dursky, The single tree-based stand simulator SILVA: construction, application and evaluation. For. Ecol. Manag. 162, 3–21 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna Pauler Ankerst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ankerst, D.P., Seifert-Klauss, V., Kiechle, M. (2014). Translational Risk Models. In: Klüppelberg, C., Straub, D., Welpe, I. (eds) Risk - A Multidisciplinary Introduction. Springer, Cham. https://doi.org/10.1007/978-3-319-04486-6_16

Download citation

Publish with us

Policies and ethics