Skip to main content

Regression II

  • Chapter
  • First Online:
  • 4021 Accesses

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 51))

Abstract

Regression serves in this chapter to relate two climate variables, X(i) and Y (i). This is a standard tool for formulating a quantitative “climate theory” based on equations. Owing to the complexity of the climate system, such a theory can never be derived alone from the pure laws of physics—it requires to establish empirical relations between observed climate processes.

Since not only Y (i) but also X(i) are observed with error, the relation has to be formulated as an errors-in-variables model, and the estimation has to be carried out using adaptions of the OLS technique. This chapter focuses on the linear model and studies three estimation techniques (denoted as OLSBC, WLSXY and Wald–Bartlett procedure). It presents a novel bivariate resampling approach (pairwise-MBBres), which enhances the coverage performance of bootstrap CIs for the estimated regression parameters.

Monte Carlo simulations allow to assess the role of various aspects of the estimation. First, prior knowledge about the size of the measurement errors is indispensable to yield a consistent estimation. If this knowledge is not exact, which is typical for a situation in the climatological practice, it contributes to the estimation error of the slope (RMSE and CI length). This contribution persists even when the data size goes to infinity; the RMSE does then not approach zero. Second, autocorrelation has to be taken into account to prevent estimation errors unrealistically small and CIs too narrow.

This chapter studies two extensions of high relevance for climatological applications: linear prediction and lagged regression.

Regression as a method to estimate the trend in the climate equation (Eq. 1.2) is presented in Chap. 4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adcock RJ (1877) Note on the method of least squares. Analyst 4(6): 183–184

    Article  Google Scholar 

  • Adcock RJ (1878) A problem in least squares. Analyst 5(2): 53–54

    Article  Google Scholar 

  • Allen MR, Stott PA (2003) Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dynamics 21(5–6): 477–491

    Article  Google Scholar 

  • Ammann CM, Genton MG, Li B (2010) Technical note: Correcting for signal attenuation from noisy proxy data in climate reconstructions. Climate of the Past 6(2): 273–279

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329(6138): 408–414

    Article  Google Scholar 

  • Bartlett MS (1949) Fitting a straight line when both variables are subject to error. Biometrics 5(3): 207–212

    Article  Google Scholar 

  • Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297(5585): 1287–1288

    Article  Google Scholar 

  • Bloomfield P, Royle JA, Steinberg LJ, Yang Q (1996) Accounting for meteorological effects in measuring urban ozone levels and trends. Atmospheric Environment 30(17): 3067–3077

    Article  Google Scholar 

  • Blunier T, Chappellaz J, Schwander J, Dällenbach A, Stauffer B, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394(6695): 739–743

    Article  Google Scholar 

  • Booth JG, Hall P (1993) Bootstrap confidence regions for functional relationships in errors-in-variables models. The Annals of Statistics 21(4): 1780–1791

    Article  Google Scholar 

  • Box GEP (1966) Use and abuse of regression. Technometrics 8(4): 625–629

    Article  Google Scholar 

  • Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13(4): 352–364

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research 111(D12): D12106. [doi:10.1029/2005JD006548]

    Article  Google Scholar 

  • Caillon N, Severinghaus JP, Jouzel J, Barnola J-M, Kang J, Lipenkov VY (2003) Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science 299(5613): 1728–1731

    Article  Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement Error in Nonlinear Models: A Modern Perspective. Second edition. Chapman and Hall, Boca Raton, FL, 455pp

    Book  Google Scholar 

  • Chylek P, Lohmann U, Dubey M, Mishchenko M, Kahn R, Ohmura A (2007) Limits on climate sensitivity derived from recent satellite and surface observations. Journal of Geophysical Research 112(D24): D24S04. [doi:10.1029/2007JD008740]

    Google Scholar 

  • Cuffey KM, Vimeux F (2001) Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412(6846): 523–527

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, 582pp

    Book  Google Scholar 

  • Deming WE (1943) Statistical Adjustment of Data. Wiley, New York, 261pp

    Google Scholar 

  • Dhrymes PJ (1981) Distributed Lags: Problems of Estimation and Formulation. Second edition. North-Holland, Amsterdam, 470pp

    Google Scholar 

  • Doran HE (1983) Lag models, distributed. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of Statistical Sciences, volume 4. Wiley, New York, pp 440–448

    Google Scholar 

  • Draper NR, Smith H (1981) Applied Regression Analysis. Second edition. Wiley, New York, 709pp

    Google Scholar 

  • Draschba S, Pätzold J, Wefer G (2000) North Atlantic climate variability since AD 1350 recorded in δ 18O and skeletal density of Bermuda corals. International Journal of Earth Sciences 88(4): 733–741

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, London, 436pp

    Book  Google Scholar 

  • EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992): 623–628

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Foster G, Annan JD, Schmidt GA, Mann ME (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. Journal of Geophysical Research 113(D15): D15102. [doi:10.1029/2007JD009373]

    Google Scholar 

  • Foutz RV (1980) Estimation of a common group delay between two multiple time series. Journal of the American Statistical Association 75(372): 779–788

    Article  Google Scholar 

  • Freedman D (1984) On bootstrapping two-stage least-squares estimates in stationary linear models. The Annals of Statistics 12(3): 827–842

    Article  Google Scholar 

  • Freedman DA, Peters SC (1984) Bootstrapping an econometric model: Some empirical results. Journal of Business & Economic Statistics 2(2): 150–158

    Google Scholar 

  • Fuller WA (1987) Measurement Error Models. Wiley, New York, 440pp

    Book  Google Scholar 

  • Fuller WA (1999) Errors in variables. In: Kotz S, Read CB, Banks DL (Eds) Encyclopedia of Statistical Sciences, volume U3. Wiley, New York, pp 213–216

    Google Scholar 

  • Gallant AR (1987) Nonlinear Statistical Models. Wiley, New York, 610pp

    Book  Google Scholar 

  • Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. Journal of Climate 15(22): 3117–3121

    Article  Google Scholar 

  • Hall P, Ma Y (2007) Testing the suitability of polynomial models in errors-in-variables problems. The Annals of Statistics 35(6): 2620–2638

    Article  Google Scholar 

  • Hamon BV, Hannan EJ (1974) Spectral estimation of time delay for dispersive and non-dispersive systems. Applied Statistics 23(2): 134–142

    Article  Google Scholar 

  • Hannan EJ, Robinson PM (1973) Lagged regression with unknown lags. Journal of the Royal Statistical Society, Series B 35(2): 252–267

    Google Scholar 

  • Hannan EJ, Thomson PJ (1974) Estimating echo times. Technometrics 16(1): 77–84

    Article  Google Scholar 

  • Hardin JW, Schmiediche H, Carroll RJ (2003) The regression-calibration method for fitting generalized linear models with additive measurement error. The Stata Journal 3(4): 361–372

    Google Scholar 

  • Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2007a) Detection of human influence on a new, validated 1500-year temperature reconstruction. Journal of Climate 20(4): 650–666

    Article  Google Scholar 

  • Hegerl GC, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087): 1029–1032

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881pp

    Google Scholar 

  • Huybers P, Denton G (2008) Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geoscience 1(11): 787–792

    Article  Google Scholar 

  • Jefferys WH (1980) On the method of least squares. The Astronomical Journal 85(2): 177–181. [Corrigendum: 1988 Vol. 95(4): 1299]

    Google Scholar 

  • Jefferys WH (1981) On the method of least squares. II. The Astronomical Journal 86(1): 149–155. [Corrigendum: 1988 Vol. 95(4): 1300]

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839): 793–796

    Article  Google Scholar 

  • Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O (2007) Northern hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448(7156): 912–916

    Article  Google Scholar 

  • Knutti R, Krähenmann S, Frame DJ, Allen MR (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. Journal of Geophysical Research 113(D15): D15103. [doi:10.1029/2007JD009473]

    Google Scholar 

  • Koyck LM (1954) Distributed Lags and Investment Analysis. North-Holland, Amsterdam, 111pp

    Google Scholar 

  • Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating the decay constant of40K and the age of a dating standard. Mathematical Geology 34(4): 457–474

    Article  Google Scholar 

  • Ledolter J (1986) Prediction and forecasting. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of Statistical Sciences, volume 7. Wiley, New York, pp 148–158

    Google Scholar 

  • Linder E, Babu GJ (1994) Bootstrapping the linear functional relationship with known error variance ratio. Scandinavian Journal of Statistics 21(1): 21–39

    Google Scholar 

  • Lindley DV (1947) Regression lines and the linear functional relationship. Journal of the Royal Statistical Society, Supplement 9(2): 218–244

    Article  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193): 379–382

    Article  Google Scholar 

  • Lybanon M (1984) A better least-squares method when both variables have uncertainties. American Journal of Physics 52(1): 22–26

    Article  Google Scholar 

  • Macdonald JR, Thompson WJ (1992) Least-squares fitting when both variables contain errors: Pitfalls and possibilities. American Journal of Physics 60(1): 66–73

    Article  Google Scholar 

  • Madansky A (1959) The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association 54(285): 173–205

    Article  Google Scholar 

  • Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Quarterly Journal of the Royal Meteorological Society 113(475): 293–322

    Article  Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291(5501): 112–114

    Article  Google Scholar 

  • Mudelsee M (2001b) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quaternary Science Reviews 20(4): 583–589

    Article  Google Scholar 

  • Mudelsee M (2012b) A proxy record of winter temperatures since 1836 from ice freeze-up/breakup in lake Näsijärvi, Finland. Climate Dynamics 38(7–8): 1413–1420

    Article  Google Scholar 

  • Musekiwa A (2005) Estimating the slope in the simple linear errors-in-variables model. M.Sc. Thesis. University of Johannesburg, Johannesburg, South Africa, 85pp

    Google Scholar 

  • Nievergelt Y (1998) Total least squares. In: Kotz S, Read CB, Banks DL (Eds) Encyclopedia of Statistical Sciences, volume U2. Wiley, New York, pp 666–670

    Google Scholar 

  • Pankratz A (1991) Forecasting with Dynamic Regression Models. Wiley, New York, 386pp

    Book  Google Scholar 

  • Parrenin F, Masson-Delmotte V, Köhler P, Raynaud D, Paillard D, Schwander J, Barbante C, Landais A, Wegner A, Jouzel J (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339(6123): 1060–1063

    Article  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(11): 559–572

    Article  Google Scholar 

  • Pedro JB, Rasmussen SO, van Ommen TD (2012) Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation. Climate of the Past 8(4): 1213–1221

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735): 429–436

    Article  Google Scholar 

  • Pierrehumbert RT (2010) Principles of Planetary Climate. Cambridge University Press, Cambridge, 652pp

    Book  Google Scholar 

  • Pierrehumbert RT (2011) Infrared radiation and planetary temperature. Physics Today 64(1): 33–38

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77: The Art of Scientific Computing. Second edition. Cambridge University Press, Cambridge, 933pp

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes: The Art of Scientific Computing. Third edition. Cambridge University Press, Cambridge, 1235pp. [C++ code]

    Google Scholar 

  • Raynaud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The ice record of greenhouse gases. Science 259(5097): 926–934

    Article  Google Scholar 

  • Reed BC (1989) Linear least-squares fits with errors in both coordinates. American Journal of Physics 57(7): 642–646. [Corrigendum: 1990 Vol. 58(2): 189]

    Google Scholar 

  • Reed BC (1992) Linear least-squares fits with errors in both coordinates. II: Comments on parameter variances. American Journal of Physics 60(1): 59–62

    Google Scholar 

  • Ripley BD, Thompson M (1987) Regression techniques for the detection of analytical bias. Analyst 112(4): 377–383

    Article  Google Scholar 

  • Saltzman B (2002) Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. Academic Press, San Diego, 354pp

    Google Scholar 

  • Scafetta N (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. Journal of Geophysical Research 113(D15): D15104. [doi:10.1029/2007JD009586]

    Google Scholar 

  • Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the northern hemisphere surface temperature records since 1600. Journal of Geophysical Research 112(D24): D24S03. [doi:10.1029/2007JD008437]

    Google Scholar 

  • Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. Journal of Geophysical Research 112(D24): D24S05. [doi:10.1029/2007JD008746]

    Google Scholar 

  • Schwartz SE (2008) Reply to comments by G. Foster et al., R. Knutti et al., and N. Scafetta on “Heat capacity, time constant, and sensitivity of Earth’s climate system”. Journal of Geophysical Research 113(D15): D15105. [doi:10.1029/2008JD009872]

    Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392): 49–54

    Article  Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science 310(5752): 1313–1317

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996pp

    Google Scholar 

  • Squire PT (1990) Comment on “Linear least-squares fits with errors in both coordinates,” by B. C. Reed [Am. J. Phys. 57, 642–646 (1989)]. American Journal of Physics 58(12): 1209

    Google Scholar 

  • Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453(7195): 646–649

    Article  Google Scholar 

  • Tol RSJ, de Vos AF (1993) Greenhouse statistics—time series analysis. Theoretical and Applied Climatology 48(2–3): 63–74

    Article  Google Scholar 

  • Wald A (1940) The fitting of straight lines if both variables are subject to error. Annals of Mathematical Statistics 11(3): 284–300

    Article  Google Scholar 

  • Wolff E, Kull C, Chappellaz J, Fischer H, Miller H, Stocker TF, Watson AJ, Flower B, Joos F, Köhler P, Matsumoto K, Monnin E, Mudelsee M, Paillard D, Shackleton N (2005) Modeling past atmospheric CO2: Results of a challenge. Eos, Transactions of the American Geophysical Union 86(38): 341, 345

    Google Scholar 

  • Wolff EW, Fischer H, Röthlisberger R (2009) Glacial terminations as southern warmings without northern control. Nature Geoscience 2(3): 206–209

    Article  Google Scholar 

  • York D (1966) Least-squares fitting of a straight line. Canadian Journal of Physics 44(5): 1079–1086

    Article  Google Scholar 

  • York D (1967) The best isochron. Earth and Planetary Science Letters 2(5): 479–482

    Article  Google Scholar 

  • York D (1969) Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5(5): 320–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mudelsee, M. (2014). Regression II. In: Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-04450-7_8

Download citation

Publish with us

Policies and ethics