Skip to main content

Reflected Brownian Motion in Time Dependent Domains

  • Chapter
  • First Online:
Book cover Brownian Motion and its Applications to Mathematical Analysis

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2106))

  • 3632 Accesses

Abstract

This chapter presents a number of results on the heat equation solution in time dependent domains proved using probabilistic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Atar, K. Burdzy, On nodal lines of Neumann eigenfunctions. Electron. Commun. Probab. 7, 129–139 (2002)

    Article  MathSciNet  Google Scholar 

  2. R. Atar, K. Burdzy, On Neumann eigenfunctions in lip domains. J. Am. Math. Soc. 17(2), 243–265 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Arcozzi, E. Casadio Tarabusi, F. Di Biase, M.A. Picardello, Twist points of planar domains. Trans. Am. Math. Soc. 358(6), 2781–2798 (2006)

    Article  MATH  Google Scholar 

  4. L.V. Ahlfors, Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable. International Series in Pure and Applied Mathematics, 3rd edn. (McGraw-Hill Book, New York, 1978)

    Google Scholar 

  5. R. Atar, Invariant wedges for a two-point reflecting Brownian motion and the “hot spots” problem. Electron. J. Probab. 6(18), 19 pp. (2001)

    Google Scholar 

  6. S. Athreya, Monotonicity property for a class of semilinear partial differential equations, in Séminaire de Probabilités, XXXIV. Lecture Notes in Mathematics, vol. 1729 (Springer, Berlin, 2000), pp. 388–392

    Google Scholar 

  7. C. Bandle, Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics, vol. 7 (Pitman (Advanced Publishing Program), Boston, 1980)

    Google Scholar 

  8. R. Bañuelos, On an estimate of Cranston and McConnell for elliptic diffusions in uniform domains. Probab. Theory Relat. Fields 76(3), 311–323 (1987)

    Google Scholar 

  9. R.F. Bass, Probabilistic Techniques in Analysis. Probability and Its Applications (Springer, New York, 1995)

    MATH  Google Scholar 

  10. R.F. Bass, K. Burdzy, Lifetimes of conditioned diffusions. Probab. Theory Relat. Fields 91(3–4), 405–443 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Bañuelos, K. Burdzy, On the “hot spots” conjecture of J. Rauch. J. Funct. Anal. 164(1), 1–33 (1999)

    Article  MATH  Google Scholar 

  12. R.F. Bass, K. Burdzy, Fiber Brownian motion and the “hot spots” problem. Duke Math. J. 105(1), 25–58 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. R.F. Bass, K. Burdzy, On pathwise uniqueness for reflecting Brownian motion in C 1+γ domains. Ann. Probab. 36(6), 2311–2331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. R.F. Bass, K. Burdzy, Z.-Q. Chen, Uniqueness for reflecting Brownian motion in lip domains. Ann. Inst. H. Poincaré Probab. Stat. 41(2), 197–235 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Burdzy, Z.-Q. Chen, Weak convergence of reflecting Brownian motions. Electron. Commun. Probab. 3, 29–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Burdzy, Z.-Q. Chen, Coalescence of synchronous couplings. Probab. Theory Relat. Fields 123(4), 553–578 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Burdzy, Z.-Q. Chen, J. Sylvester, The heat equation and reflected Brownian motion in time-dependent domains. II. Singularities of solutions. J. Funct. Anal. 204(1), 1–34 (2003)

    MATH  MathSciNet  Google Scholar 

  18. K. Burdzy, Z.-Q. Chen, J. Sylvester, The heat equation and reflected Brownian motion in time-dependent domains. Ann. Probab. 32(1B), 775–804 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  20. R.F. Bass, P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Ann. Probab. 19(2), 486–508 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. (Wiley, New York, 1999)

    Google Scholar 

  22. K. Burdzy, D. Khoshnevisan, Brownian motion in a Brownian crack. Ann. Appl. Probab. 8(3), 708–748 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Burdzy, W.S. Kendall, Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Probab. 10(2), 362–409 (2000)

    Article  MathSciNet  Google Scholar 

  24. R. Bañuelos, M. Pang, An inequality for potentials and the “hot-spots” conjecture. Indiana Univ. Math. J. 53(1), 35–47 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Bañuelos, M. Pang, M. Pascu, Brownian motion with killing and reflection and the “hot-spots” problem. Probab. Theory Relat. Fields 130(1), 56–68 (2004)

    Article  MATH  Google Scholar 

  26. W. Bryc, The Normal Distribution. Lecture Notes in Statistics, vol. 100 (Springer, New York, 1995). Characterizations with applications

    Google Scholar 

  27. D.L. Burkholder, Harmonic analysis and probability, in Studies in Harmonic Analysis (Proc. Conf., DePaul Univ., Chicago, Ill., 1974). MAA Stud. Math., vol. 13 (Mathematical Association of America, Washington, 1976), pp. 136–149

    Google Scholar 

  28. K. Burdzy, Minimal fine derivatives and Brownian excursions. Nagoya Math. J. 119, 115–132 (1990)

    MATH  MathSciNet  Google Scholar 

  29. K. Burdzy, The hot spots problem in planar domains with one hole. Duke Math. J. 129(3), 481–502 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. K. Burdzy, W. Werner, A counterexample to the “hot spots” conjecture. Ann. Math. (2) 149(1), 309–317 (1999)

    Google Scholar 

  31. I. Chavel, Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115 (Academic, Orlando, 1984). Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk

    Google Scholar 

  32. M.F. Chen, From Markov Chains to Nonequilibrium Particle Systems (World Scientific Publishing, River Edge, 1992)

    Book  Google Scholar 

  33. Z.Q. Chen, Pseudo Jordan domains and reflecting Brownian motions. Probab. Theory Relat. Fields 94(2), 271–280 (1992)

    Article  MATH  Google Scholar 

  34. K.L. Chung, The lifetime of conditional Brownian motion in the plane. Ann. Inst. H. Poincaré Probab. Stat. 20(4), 349–351 (1984)

    MATH  Google Scholar 

  35. B. Davis, Picard’s theorem and Brownian motion. Trans. Am. Math. Soc. 213, 353–362 (1975)

    MATH  Google Scholar 

  36. B. Davis, Applications of the conformal invariance of Brownian motion, in Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society, Williams College, Williamstown, MA, 10–28 July, 1978, ed. by G. Weiss, S. Wainger. Harmonic Analysis in Euclidean Spaces. Part 2, vol. XXXV (American Mathematical Society, Providence, 1979), pp. 303–310. Dedicated to Nestor M. Rivière

    Google Scholar 

  37. B. Davis, Brownian motion and analytic functions. Ann. Probab. 7(6), 913–932 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  38. E.B. Davies, Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  39. J.L. Doob, Conformally invariant cluster value theory. Ill. J. Math. 5, 521–549 (1961)

    MATH  MathSciNet  Google Scholar 

  40. J.L. Doob, Classical Potential Theory and Its Probabilistic Counterpart. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 262 (Springer, New York, 1984)

    Google Scholar 

  41. P.L. Duren, Univalent Functions. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 259 (Springer, New York, 1983)

    Google Scholar 

  42. R. Durrett, Brownian Motion and Martingales in Analysis. Wadsworth Mathematics Series (Wadsworth International Group, Belmont, 1984)

    MATH  Google Scholar 

  43. P.J. Fitzsimmons, Time changes of symmetric Markov processes and a Feynman-Kac formula. J. Theor. Probab. 2(4), 487–501 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  44. G.B. Folland, Introduction to Partial Differential Equations (Princeton University Press, Princeton, 1976). Preliminary informal notes of university courses and seminars in mathematics, Mathematical Notes

    Google Scholar 

  45. M. Fukushima, Y. Ōshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics, vol. 19 (Walter de Gruyter & Co., Berlin, 1994)

    Google Scholar 

  46. P. Freitas, Closed nodal lines and interior hot spots of the second eigenfunction of the Laplacian on surfaces. Indiana Univ. Math. J. 51(2), 305–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains. Osaka J. Math. 4, 183–215 (1967)

    MATH  MathSciNet  Google Scholar 

  48. J.-C. Gruet, On the length of the homotopic Brownian word in the thrice punctured sphere. Probab. Theory Relat. Fields 111(4), 489–516 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. R. Hempel, L.A. Seco, B. Simon, The essential spectrum of Neumann Laplacians on some bounded singular domains. J. Funct. Anal. 102(2), 448–483 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  50. K. Itô, H.P. McKean Jr., Diffusion Processes and Their Sample Paths (Springer, Berlin, 1974). Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125

    Google Scholar 

  51. K. Ishige, N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large diffusion. Math. Ann. 327(3), 487–511 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, 2nd edn., vol. 24 (North-Holland, Amsterdam, 1989)

    Google Scholar 

  53. D. Jerison, Locating the first nodal line in the Neumann problem. Trans. Am. Math. Soc. 352(5), 2301–2317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. D. Jerison, N. Nadirashvili, The “hot spots” conjecture for domains with two axes of symmetry. J. Am. Math. Soc. 13(4), 741–772 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. S. Kakutani, Two-dimensional Brownian motion and harmonic functions. Proc. Imp. Acad. Tokyo 20, 706–714 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  56. S. Kakutani, Markoff process and the Dirichlet problem. Proc. Jpn. Acad. 21(1945), 227–233 (1949)

    MATH  MathSciNet  Google Scholar 

  57. S. Kakutani, Two-dimensional Brownian motion and the type problem of Riemann surfaces. Proc. Jpn. Acad. 21(1945), 138–140 (1949)

    MATH  MathSciNet  Google Scholar 

  58. B. Kawohl, Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150 (Springer, Berlin, 1985)

    Google Scholar 

  59. F.B. Knight, Essentials of Brownian Motion and Diffusion. Mathematical Surveys, vol. 18 (American Mathematical Society, Providence, 1981)

    Google Scholar 

  60. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 2nd edn., vol. 113 (Springer, New York, 1991)

    Google Scholar 

  61. C.S. Lin, On the second eigenfunctions of the Laplacian in R 2. Commun. Math. Phys. 111(2), 161–166 (1987)

    Article  MATH  Google Scholar 

  62. T. Lindvall, Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics (Wiley, New York, 1992)

    MATH  Google Scholar 

  63. P.-L. Lions, A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37(4), 511–537 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  64. S.L. Luo, A probabilistic proof of the fundamental theorem of algebra and a generalization. Math. Appl. (Wuhan) 8(4), 487–489 (1995)

    Google Scholar 

  65. J.E. McMillan, Boundary behavior of a conformal mapping. Acta Math. 123, 43–67 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  66. Y. Miyamoto, The “hot spots” conjecture for a certain class of planar convex domains. J. Math. Phys. 50(10), 103530–103530-7 (2009)

    Google Scholar 

  67. T.S. Mountford, Transience of a pair of local martingales. Proc. Am. Math. Soc. 103(3), 933–938 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  68. P. Mörters, Y. Peres, Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, Cambridge, 2010). With an appendix by Oded Schramm and Wendelin Werner

    Google Scholar 

  69. N.S. Nadirashvili, Multiplicity of eigenvalues of the Neumann problem. Dokl. Akad. Nauk SSSR 286(6), 1303–1305 (1986)

    MathSciNet  Google Scholar 

  70. N.S. Nadirashvili, Multiple eigenvalues of the Laplace operator. Mat. Sb. (N.S.) 133(175)(2), 223–237, 272 (1987)

    Google Scholar 

  71. A.A. Novikov, Small deviations of Gaussian processes. Mat. Zametki 29(2), 291–301, 319 (1981)

    Google Scholar 

  72. N. Nadirashvili, D. Tot, D. Yakobson, Geometric properties of eigenfunctions. Uspekhi Mat. Nauk 56(6(342)), 67–88 (2001)

    Google Scholar 

  73. M.D. O’Neill, A Green proof of Fatou’s theorem. J. Stat. Theory Pract. 5(3), 497–513 (2011)

    Article  MathSciNet  Google Scholar 

  74. M.D. O’Neill, A geometric and stochastic proof of the twist point theorem. Publ. Mat. 56(1), 41–63 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  75. M.N. Pascu, Scaling coupling of reflecting Brownian motions and the hot spots problem. Trans. Am. Math. Soc. 354(11), 4681–4702 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  76. M.N. Pascu, A probabilistic proof of the fundamental theorem of algebra. Proc. Am. Math. Soc. 133(6), 1707–1711 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  77. M.N. Pascu, M.E. Gageonea, Monotonicity properties of the Neumann heat kernel in the ball. J. Funct. Anal. 260(2), 490–500 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  78. M.A. Pinsky, The eigenvalues of an equilateral triangle. SIAM J. Math. Anal. 11(5), 819–827 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  79. M.A. Pinsky, Completeness of the eigenfunctions of the equilateral triangle. SIAM J. Math. Anal. 16(4), 848–851 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  80. Polymath7. The Hot Spots Conjecture, http://polymathprojects.org/2012/09/10/polymath7-research-threads-4-the-hot-spots-conjecture/, Ch. Evans, T. Tao (moderators). Accessed 24 June 2012

  81. C. Pommerenke, Univalent Functions (Vandenhoeck & Ruprecht, Göttingen, 1975). With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV

    Google Scholar 

  82. Ch. Pommerenke. Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 299 (Springer, Berlin, 1992)

    Google Scholar 

  83. P. Protter, Stochastic Integration and Differential Equations. Applications of Mathematics (New York), vol. 21 (Springer, Berlin, 1990). A new approach

    Google Scholar 

  84. J. Pitman, M. Yor, Asymptotic laws of planar Brownian motion. Ann. Probab. 14(3), 733–779 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  85. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 3rd edn., vol. 293 (Springer, Berlin, 1999)

    Google Scholar 

  86. M. Shimura, Excursions in a cone for two-dimensional Brownian motion. J. Math. Kyoto Univ. 25(3), 433–443 (1985)

    MATH  MathSciNet  Google Scholar 

  87. M.L. Silverstein, Symmetric Markov Processes. Lecture Notes in Mathematics, vol. 426 (Springer, Berlin, 1974)

    Google Scholar 

  88. F. Soucaliuc, B. Tóth, W. Werner, Reflection and coalescence between independent one-dimensional Brownian paths. Ann. Inst. H. Poincaré Probab. Stat. 36(4), 509–545 (2000)

    Article  MATH  Google Scholar 

  89. G.N. Sytaja, Asymptotic representation of the probability of small deviation of the trajectory of a Brownian motion from a given function, in Theory of Random Processes, No. 3 (Russian), pp. 117–121, 160 (Izdat. Naukova Dumka, Kiev, 1975)

    Google Scholar 

  90. G.N. Sytaja, The asymptotic behavior of the Wiener measure of small spheres. Teor. Verojatnost. i Mat. Statist. 16, 121–135, 157 (1977)

    Google Scholar 

  91. G.N. Sytaja, On the problem of the asymptotic behavior of a Wiener measure of small spheres in the uniform metric, in Analytical Methods of Probability Theory (Russian), pp. 95–98, 153 (Naukova Dumka, Kiev, 1979)

    Google Scholar 

  92. S.R.S. Varadhan, R.J. Williams, Brownian motion in a wedge with oblique reflection. Commun. Pure Appl. Math. 38(4), 405–443 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  93. F.Y. Wang, Application of coupling methods to the Neumann eigenvalue problem. Probab. Theory Relat. Fields 98(3), 299–306 (1994)

    Article  MATH  Google Scholar 

  94. Wikipedia, Brownian motion—wikipedia, the free encyclopedia (2012), http://en.wikipedia.org/w/index.php?title=Brownian_motion&oldid=524637895. Accessed 24 Nov 2012

  95. Wikipedia, Probabilistic method—wikipedia, the free encyclopedia (2012), http://en.wikipedia.org/w/index.php?title=Probabilistic_method&oldid=518260271. Accessed 24 Nov 2012

  96. Wikipedia, Probabilistic proofs of non-probabilistic theorems—wikipedia, the free encyclopedia (2012), http://en.wikipedia.org/w/index.php?title=Probabilistic_proofs_of_non-probabilistic_theorems&oldid=475916464. Accessed 24 Nov 2012

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burdzy, K. (2014). Reflected Brownian Motion in Time Dependent Domains. In: Brownian Motion and its Applications to Mathematical Analysis. Lecture Notes in Mathematics(), vol 2106. Springer, Cham. https://doi.org/10.1007/978-3-319-04394-4_10

Download citation

Publish with us

Policies and ethics