Skip to main content

Physics and Chemistry of Colloidal Semiconductor Nanocrystals

  • Chapter
  • First Online:
Book cover Solar Cells Based on Colloidal Nanocrystals

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 196))

  • 2885 Accesses

Abstract

Nanocrystals with spatial dimensions in the range of a few nanometers are small crystallites consisting of only a few hundreds to thousands of atoms. The size of the crystals being strongly limited, nanocrystalline materials possess physical and chemical properties which can differ significantly from those of the corresponding bulk material. Thus, by reducing the particle size, it becomes possible to manipulate certain material properties. A prominent example is the so-called quantum size effect which causes an increase of the band gap of semiconductors with decreasing particle size. From the opportunity to tune material properties by controlling the spatial dimensions arises a large variety of potential applications of nanocrystalline materials. One efficient concept to fabricate nanocrystals with well-defined size and shape is colloidal chemistry. In colloidal chemistry, organic ligand molecules are used which bind to the surface of the nanoparticles during synthesis. These ligands have a variety of functions and enable obtaining nanocrystals with defined structural properties. The aim of this chapter is to give an overview over the physics and chemistry of colloidal semiconductor nanocrystals. Basic principles of colloidal synthesis will be outlined, a brief overview of size-dependent material properties will be given and selected properties such as the quantum size effect will be treated in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Weller, Angew. Chem. Int. Ed. 32, 41 (1993)

    Article  Google Scholar 

  2. H. Weller, Adv. Mater. 5, 88 (1993)

    Article  Google Scholar 

  3. A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996)

    Article  Google Scholar 

  4. A. Eychmüller, J. Phys. Chem. B 104, 6514 (2000)

    Article  Google Scholar 

  5. R. Schlögl, S.B. Abd Hamid, Angew. Chem. Int. Ed. 43, 1628 (2004)

    Article  Google Scholar 

  6. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  7. C.M. Niemeyer, Angew. Chem. Int. Ed. 40, 4128 (2001)

    Article  Google Scholar 

  8. K.L. Choy, Prog. Mater Sci. 48, 57 (2003)

    Article  Google Scholar 

  9. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010)

    Article  Google Scholar 

  10. M.M. Frank, M. Bäumer, Phys. Chem. Chem. Phys. 2, 3723 (2000)

    Article  Google Scholar 

  11. M. Bäumer, M.M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, H.-J. Freund, Surf. Sci. 454456, 957 (2000)

    Google Scholar 

  12. A.L. Rogach, N. Gaponik, J.M. Lupton, C. Bertoni, D.E. Gallardo, S. Dunn, N.L. Pira, M. Paderi, P. Repetto, S.G. Romanov, C. O’Dwyer, C.M. Sotomayor Torres, A. Eychmüller, Angew. Chem. Int. Ed. 47, 6538 (2008)

    Article  Google Scholar 

  13. W.E.J. Beek, R.A.J. Janssen, in Hybrid Nanocomposites for Nanotechnology, ed. by L. Merhari (Springer Science+Business Media, New York, 2009)

    Google Scholar 

  14. Y. Zhou, M. Eck, M. Krüger, Energy Environ. Sci. 3, 1851 (2010)

    Article  Google Scholar 

  15. C.B. Murray, C.R. Kagan, M.G. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000)

    Article  Google Scholar 

  16. H. Weller, Philos. Trans. R. Soc. London A 361, 229 (2003)

    Article  Google Scholar 

  17. Y. Yin, A.P. Alivisatos, Nature 437, 664 (2005)

    Article  Google Scholar 

  18. X. Peng, Nano Res. 2, 425 (2009)

    Article  Google Scholar 

  19. D.V. Talapin, A.L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B 105, 12278 (2001)

    Article  Google Scholar 

  20. H. Borchert, D.V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Möller, H. Weller, J. Phys. Chem. B 107, 9662 (2003)

    Article  Google Scholar 

  21. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002)

    Article  Google Scholar 

  22. C. de Mello Donega, P. Liljeroth, D. Vanmaekelbergh, Small 1, 1152 (2005)

    Google Scholar 

  23. M. Protière, N. Nerambourg, O. Renard, P. Reiss, Nanoscale Res. Lett. 6, 472 (2011)

    Article  Google Scholar 

  24. I. Moreels, J.C. Martins, Z. Hens, Chem. Phys. Chem. 7, 1028 (2006)

    Article  Google Scholar 

  25. X. Wang, P. Sonström, D. Arndt, J. Stöver, V. Zielasek, H. Borchert, K. Thiel, K. Al-Shamery, M. Bäumer, J. Catal. 278, 143 (2011)

    Google Scholar 

  26. K.E. Knowles, D.B. Tice, E.A. McArthur, G.C. Solomon, E.A. Weiss, J. Am. Chem. Soc. 132, 1041 (2010)

    Article  Google Scholar 

  27. R.P. Andres, J.D. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, R.G. Osifchin, Science 273, 1690 (1996)

    Article  Google Scholar 

  28. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  Google Scholar 

  29. R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, J. Chem. Phys. 80, 4464 (1984)

    Article  Google Scholar 

  30. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Article  Google Scholar 

  31. J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, J. Phys. Chem. 98, 4109 (1994)

    Article  Google Scholar 

  32. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett. 1, 207 (2001)

    Article  Google Scholar 

  33. J. Kolny-Olesiak, V. Kloper, R. Osovsky, A. Sashchiuk, E. Lifshitz, Surf. Sci. 601, 2667 (2007)

    Article  Google Scholar 

  34. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    Article  Google Scholar 

  35. L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000)

    Article  Google Scholar 

  36. S.D. Bunge, K.M. Krueger, T.J. Boyle, M.A. Rodriguez, T.J. Headley, V.L. Colvin, J. Mater. Chem. 13, 1705 (2003)

    Article  Google Scholar 

  37. R. Kho, C.L. Torres-Martinez, R.K. Mehra, J. Colloid Interface Sci. 227, 561 (2000)

    Article  Google Scholar 

  38. W.-S. Chae, R.J. Kershner, P.V. Braun, Bull. Korean Chem. Soc. 30, 129 (2009)

    Article  Google Scholar 

  39. P.D. Cozzoli, L. Manna, M.L. Curri, S. Kudera, C. Giannini, M. Striccoli, A. Agostiano, Chem. Mater. 17, 1296 (2005)

    Article  Google Scholar 

  40. A.A. Guzelian, U. Banin, A.V. Kadavanich, X. Peng, A.P. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996)

    Article  Google Scholar 

  41. A.A. Guzelian, J.E.B. Katari, A.V. Kadavanich, U. Banin, K. Hamad, E. Juban, A.P. Alivisatos, R.H. Wolters, C.C. Arnold, J.R. Heath, J. Phys. Chem. 100, 7212 (1996)

    Article  Google Scholar 

  42. D.V. Talapin, N. Gaponik, H. Borchert, A.L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B 106, 12659 (2002)

    Article  Google Scholar 

  43. R. Xie, M. Rutherford, X. Peng, J. Am. Chem. Soc. 131, 5691 (2009)

    Article  Google Scholar 

  44. M. Kruszynska, H. Borchert, J. Parisi, J. Kolny-Olesiak, J. Am. Chem. Soc. 132, 15976 (2010)

    Article  Google Scholar 

  45. I. Mekis, D.V. Talapin, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. B 107, 7454 (2003)

    Article  Google Scholar 

  46. S. Haubold, M. Haase, A. Kornowski, H. Weller, Chem. Phys. Chem. 2, 331 (2001)

    Article  Google Scholar 

  47. Y.W. Cao, U. Banin, J. Am. Chem. Soc. 122, 9692 (2000)

    Article  Google Scholar 

  48. Q. Dai, Y. Wang, X. Li, Y. Zhang, D.J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, W.W. Yu, ACS Nano 3, 1518 (2009)

    Article  Google Scholar 

  49. E. Witt, F. Witt, N. Trautwein, D. Fenske, J. Neumann, H. Borchert, J. Parisi, J. Kolny-Olesiak, Phys. Chem. Chem. Phys. 14, 11706 (2012)

    Article  Google Scholar 

  50. A. Petrella, M. Tamborra, M.L. Curri, P. Cosma, M. Striccoli, P.D. Cozzoli, A. Agostiano, J. Phys. Chem. B 109, 1554 (2005)

    Article  Google Scholar 

  51. Y. Li, M. Zhang, M. Guo, X. Wang, Rare Met. 29, 286 (2010)

    Article  Google Scholar 

  52. F. Söderlind, M.A. Fortin, R.M. Petoral Jr, A. Klasson, T. Veres, M. Engström, K. Uvdal, P.-O. Käll, Nanotechnology 19, 085608 (2008)

    Article  Google Scholar 

  53. N.R. Jana, X. Peng, J. Am. Chem. Soc. 125, 14280 (2003)

    Article  Google Scholar 

  54. T. Hyeon, Chem. Commun. 927 (2003)

    Google Scholar 

  55. K. Ahrenstorf, O. Albrecht, H. Heller, A. Kornowski, D. Görlitz, H. Weller, Small 3, 271 (2007)

    Article  Google Scholar 

  56. X. Wang, J. Stöver, V. Zielasek, L. Altmann, K. Thiel, K. Al-Shamery, M. Bäumer, H. Borchert, J. Parisi, J. Kolny-Olesiak, Langmuir 27, 11052 (2011)

    Article  Google Scholar 

  57. J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 4630 (2007)

    Article  Google Scholar 

  58. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  59. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  60. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  Google Scholar 

  61. J.Z. Zhang, J. Phys. Chem. B 104, 7239 (2000)

    Article  Google Scholar 

  62. Y. Wang, A. Suna, W. Mahler, R. Kasowski, J. Chem. Phys. 87, 7315 (1987)

    Article  Google Scholar 

  63. K.F. Yang, H.P.R. Frederikse, J. Phys. Chem. Ref. Data 2, 313 (1973)

    Article  Google Scholar 

  64. G. Pellegrini, G. Mattei, P. Mazzoldi, J. Appl. Phys. 97, 073706 (2005)

    Article  Google Scholar 

  65. H. Fu, L.-W. Wang, A. Zunger, Phys. Rev. B 59, 5568 (1999)

    Article  Google Scholar 

  66. M. Navaneethan, K.D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, Rev. Adv. Mater. Sci. 21, 217 (2009)

    Google Scholar 

  67. H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox, Nano Lett. 2, 1321 (2002)

    Article  Google Scholar 

  68. A.L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000)

    Article  Google Scholar 

  69. D.E. Gomez, M. Califano, P. Mulvaney, Phys. Chem. Chem. Phys. 8, 4989 (2006)

    Article  Google Scholar 

  70. S.G. Prussin, Nuclear Physics for Applications (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  71. J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, M. Califano, J. Phys. Chem. C 113, 19468 (2009)

    Article  Google Scholar 

  72. W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854 (2003)

    Article  Google Scholar 

  73. H.S. Zhou, I. Honma, H. Komiyama, J.W. Haus, J. Phys. Chem. 97, 895 (1993)

    Article  Google Scholar 

  74. F. Zutz, I. Lokteva, N. Radychev, J. Kolny-Olesiak, I. Riedel, H. Borchert, J. Parisi, Phys. Status Solidi A 206, 2700 (2009)

    Google Scholar 

  75. O.I. Micic, H.M. Cheong, H. Fu, A. Zunger, J.R. Sprague, A. Mascarenhas, A.J. Nozik, J. Phys. Chem. B 101, 4904 (1997)

    Article  Google Scholar 

  76. T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, H. Weller, J. Phys. Chem. 98, 7665 (1994)

    Article  Google Scholar 

  77. M.V. Rama Krishna, R.A. Friesner, Phys. Rev. Lett. 67, 629 (1991)

    Article  Google Scholar 

  78. L.-W. Wang, A. Zunger, Phys. Rev. B 53, 9579 (1996)

    Article  Google Scholar 

  79. J.Z. Jiang, L. Gerward, D. Frost, R. Secco, J. Peyronneau, J.S. Olsen, J. Appl. Phys. 86, 6608 (1999)

    Article  Google Scholar 

  80. J.Z. Jiang, L. Gerward, R. Secco, D. Frost, J.S. Olsen, J. Truckenbrodt, J. Appl. Phys. 87, 2658 (2000)

    Article  Google Scholar 

  81. C.-J. Lee, A. Mizel, U. Banin, M.L. Cohen, A.P. Alivisatos, J. Chem. Phys. 113, 2016 (2000)

    Article  Google Scholar 

  82. E.V. Shevchenko, D.V. Talapin, A. Kornowski, F. Wiekhorst, J. Kötzler, M. Haase, A.L. Rogach, H. Weller, Adv. Mater. 14, 287 (2002)

    Article  Google Scholar 

  83. J.-I. Park, M.G. Kim, Y.-W. Jun, J.S. Lee, W.-R. Lee, J. Cheon, J. Am. Chem. Soc. 126, 9072 (2004)

    Article  Google Scholar 

  84. C.T. Campbell, Science 306, 234 (2004)

    Article  Google Scholar 

  85. M. Haruta, M. Daté, Appl. Catal. A 222, 427 (2001)

    Article  Google Scholar 

  86. A. Wolf, F. Schüth, Appl. Catal. A 226, 1 (2002)

    Article  Google Scholar 

  87. R. Van Hardeveld, F. Hartog, Surf. Sci. 15, 189 (1969)

    Article  Google Scholar 

  88. W. Shi, Y. Sahoo, M.T. Swihart, Colloids Surf. A 246, 109 (2004)

    Article  Google Scholar 

  89. H. Borchert, D.V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Möller, H. Weller, J. Phys. Chem. B 107, 9662 (2003)

    Article  Google Scholar 

  90. B. Sun, N.C. Greenham, Phys. Chem. Chem. Phys. 8, 3557 (2006)

    Article  Google Scholar 

  91. N. Gaponik, D.V. Talapin, A.L. Rogach, A. Eychmüller, H. Weller, Nano Lett. 2, 803 (2002)

    Article  Google Scholar 

  92. H. Fu, A. Zunger, Phys. Rev. B 56, 1496 (1997)

    Article  Google Scholar 

  93. Y. Gong, T. Andelman, G.F. Neumark, S. O’Brien, I.L. Kuskovsky, Nanoscale Res. Lett. 2, 297 (2007)

    Article  Google Scholar 

  94. V. Babentsov, F. Sizov, Opto-Electron. Rev. 16, 208 (2008)

    Article  Google Scholar 

  95. S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  Google Scholar 

  96. A.N. Shipway, E. Katz, I. Willner, Chem. Phys. Chem. 1, 18 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Borchert .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borchert, H. (2014). Physics and Chemistry of Colloidal Semiconductor Nanocrystals. In: Solar Cells Based on Colloidal Nanocrystals. Springer Series in Materials Science, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-04388-3_2

Download citation

Publish with us

Policies and ethics