Skip to main content

Reconfigurable Implementation of a CNN-UM Platform for Fast Dynamical Systems Simulation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 289))

Abstract

In this work we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields such as Solid State Physics, Nuclear Physics and Plasma Physics. This distributed architecture is based on the Cellular Neural Network (CNN) paradigm which allows to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We pushed the number of processors to the limit of one processor for each equation. In order to test the present idea, we chose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of one-, two- and three-dimensional locally interconnected dynamical systems. In order to test the computing platform, we implemented a 200 cells, Korteweg de Vries (KdV) equation solver and performed a comparison between simulations conducted on high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we designed a compact System on Programmable Chip (SoPC) managed by a softcore processor which controls the fast data/control communication between our system and a PC Host. An intuitively Graphical User Interface (GUI) allows to change the calculation parameters and plot the results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Valasoulis, K., Fotiadis, D.I., Lagaris, I.E., Likas, A.: Solving differential equations with neural networks implementations on a DSP platform. In: Proceedings of 14th International Conference on Digital Signal Processing, Santorini, Greece, July 2002

    Google Scholar 

  2. Piuel, L., Martin, I., Tirado, F.: A special-purpose parallel computer for solving partial differential equations. In: Proceedings of 16th Euromicro Workshop on Parallel and Distributed Processing, (PDP’98), pp. 21–23. Madrid, Spain, 21–23 Jannuary 1998

    Google Scholar 

  3. Osana, Y. et al.: ReCSiP: an FPGA-based general-purpose biochemical simulator. Electron. Commun. Jpn. Part 2 90(7), 1–10 (2007)

    Google Scholar 

  4. Huang, C., Vahid, F., Givargis, T.: A custom FPGA processor for physical model ordinary differential equation solving. IEEE Embed. Syst. Lett. 3(4), 113–116 (2011)

    Article  Google Scholar 

  5. He, K., Jiang, Y., Dong, S.: A hybrid parallel framework for cellular potts model simulations. In: Proceedings of 15th International Conference on Parallel and Distributed Systems, Shenzhen, Guangdong, China, 11 December 2009

    Google Scholar 

  6. Hertz, J., Palmer, R.G., Krogh, A.S.: Introduction to the Theory of Neural Computation. Perseus Books, Reading (1990). (ISBN 0-201-51560-1)

    Google Scholar 

  7. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1998)

    Article  MathSciNet  Google Scholar 

  8. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1998)

    Article  MathSciNet  Google Scholar 

  9. Roska, T., Chua, L.O.: The CNN universal machine: an analogic array computer. IEEE Trans. Circuits Syst. II 40(3), 163–173 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arena, P., Fortuna, L., Rizzo, A., Xibilia, M.G.: Extending the CNN paradigm to approximate chaotic systems with multivariable nonlinearities. In: ISCAS 2000, IEEE International Symposium on Circuits and Systems, Geneve, Switzerland, 28–31 May 2000

    Google Scholar 

  11. Fortuna, L., Rizzo, A., Xibilia, M.G.: Modeling complex dynamics via extended PWL-based CNNS. Int. J. Bifurcat. Chaos 13(11), 3273–3286 (2003)

    Article  MATH  Google Scholar 

  12. Cheung, O.Y.H., Leong, P.H.W., Tsang, E.K.C., Shi, B.E.: A scalable FPGA implementation of cellular neural networks for gabor-type filtering. In: Proceedings of International Joint Conference on Neural networks, Vancouver, BC, Canada, 16–21 July 2006

    Google Scholar 

  13. Magazzu, G., Borgese, G., Costantino, N., Fanucci, L., Incandela, J., Saponara, S.: Design exploration and verification platform, based on high-level modeling and FPGA prototyping, for fast and flexible digital communication in physics experiments. J. Instrum. 8(2), P02021 (2013)

    Article  Google Scholar 

  14. Soos, B.G., Rak, A., Veres, J., Cserey, G.: GPU powered CNN simulator (SIMCNN) with graphical flow based programmability. In: Proceedings of 11th International Workshop on Cellular Neural Networks and Their Applications (CNNA’08), pp. 14–16. Santiago de Compostela, Spain, 14–16 July 2008

    Google Scholar 

  15. Dolan, R., DeSouza, G.: GPU-based simulation of cellular neural networks for image processing. In: Proceedings of International Joint Conference on Neural Networks (IJCNN’09), Atlanta, Georgia, USA, 14–19 June 2009

    Google Scholar 

  16. Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations. Comput. Sci.-Res. Dev. 25(1–2), 65–73 (2010)

    Article  Google Scholar 

  17. Ho, T.Y., Lam, P.M., Leung, C.S.: Parallelization of cellular neural networks on GPU. Pattern Recognit. 41(18), 2684–2692 (2008)

    Article  MATH  Google Scholar 

  18. Nagy, Z., Szolgay, P.: Configurable multilayer CNN-UM emulator on FPGA. IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl. 50(6), 774–778 (2003)

    Google Scholar 

  19. Nagy, Z., Vrshazi, Z., Szolgay, P.: Emulated digital CNN-UM solution of partial differential equations. Int. J. Circuit Theor. Appl. 34, 445–470 (2006)

    Article  MATH  Google Scholar 

  20. Vrshazi, Z., Kiss, A., Nagy, Z., Szolgay, P.: FPGA based emulated-digital CNN-UM implementation with GAPU. In: Proceedings of 11th International Workshop on Cellular Neural Networks and their Applications, pp. 14–16. Santiago de Compostela, Spain, July 2008

    Google Scholar 

  21. Kocsardi, S., Nagy, Z., Csik, A., Szolgay, P.: Two-dimension compressible flow simulation on emulated digital CNN-UM. In: Proceedings of 11th International Workshop on Cellular Neural Networks and their Applications (CNNA’08), pp. 14–16. Santiago de Compostela, Spain, July 2008

    Google Scholar 

  22. Borgese, G., Pace, C., Pantano, P., Bilotta, E.: FPGA-based distributed computing microarchitecture for complex dynamical physics investigation. Trans. Neural Netw. Learn. Syst. (TNNLS) 24(9), 1390–1399 (2013)

    Article  Google Scholar 

  23. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MATH  Google Scholar 

  24. Bilotta, E., Stranges, F., Pantano, P.: A gallery of Chua attractors: part III. Int. J. Bifurcat. Chaos 17(3), 657–734 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bilotta, E., Di Blasi, G., Stranges, F., Pantano, P.: A gallery of Chua attractors. Part VI. Int. J. Bifurcat. Chaos 17(6), 1801–1910 (2007)

    Article  MATH  Google Scholar 

  26. Bilotta, E., Pantano, P.: Emergent patterning phenomena in 2D cellular automata. Artif. Life 11(3), 339–362 (2005)

    Article  Google Scholar 

  27. Bilotta, E., Pantano, P.: Structural and functional growth in self-reproducing cellular automata. Complexity 11(6), 12–29 (2006)

    Article  MathSciNet  Google Scholar 

  28. Bilotta, E., Pantano, P.: The language of chaos. Int. J. Bifurcat. Chaos 16(3), 523–557 (2006)

    Google Scholar 

  29. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, New York (2003). (ISBN 0-12-349703-5)

    Google Scholar 

  30. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction, 2nd edn. Cambridge University Press, Cambridge (1989). (ISBN 0-521-33655-4)

    Book  MATH  Google Scholar 

  31. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collitionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–242 (1965)

    Google Scholar 

  32. Hereman, W.: Shallow water waves and solitary waves. In: Encyclopedia of Complexity and Systems Science, pp. 8112–25. Springer, New York (2009)

    Google Scholar 

  33. Washimi, H., Taniuti, T.: Propagation of ion acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)

    Article  Google Scholar 

  34. Giamb, S., Pantano, P.: Three-dimensional ion-acoustic waves in a collisionless plasma. Lett. al Nuovo Cimento 34, 380–384 (1982)

    Article  Google Scholar 

  35. Wadati, M.: Wave propagation in non linear lattice. J. Phys. Soc. Jpn. 38, 673–680 (1975)

    Article  MathSciNet  Google Scholar 

  36. Fukushima, K., Wadati, M., Kotera, T., Sawada, K., Narahara, Y.: Experimental and theoretical study of the recurrence phenomena in nonlinear transmission line. J. Phys. Soc. Jpn. 48, 1029–1035 (1980)

    Article  Google Scholar 

  37. Pantano, P.: Inhomogeneous dispersive and dissipative nonlinear transmission lines and solitons. Lett. al Nuovo Cimento 8, 209–214 (1983)

    Article  MathSciNet  Google Scholar 

  38. Gallavotti, G. (ed.) Fermi-Pasta-Ulam problem: A status report, A Status Report, Lecture Notes in Physics, vol. 728 (2008)

    Google Scholar 

  39. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  40. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: The Korteweg de Vries equation and generalizations VI. Methods for exact solution. Commun. Pure Appl. Math. 27, 97–133 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  41. Vliegenthart, A.C.: On finite-difference methods for the Korteweg-de Vries equation. J. Eng. Math. 5(2), 137–155 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  42. Fortuna, L., Frasca, M., Rizzo, A.: Generating solitons in lattices of nonlinear circuits. In: ISCAS 2001, The 2001 IEEE International Symposium on Circuits and Systems, pp. 680–683. Sydney, NSW, Australia, May 2 2001

    Google Scholar 

  43. Remoissenet, M.: Waves Called Solitons. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  44. Luitel, B., Venayagamoorthy, G.K.: Decentralized asynchronous learning in cellular neural networks. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) 23(11), 1755–1766 (2012)

    Article  Google Scholar 

  45. Papadonikolakis, M., Bouganis, C.: Novel cascade FPGA accelerator for support vector machines classification. IEEE Trans. Neural Netw. Learn Syst. (TNNLS) 23(7), 1040–1052 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Borgese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Borgese, G., Pace, C., Pantano, P., Bilotta, E. (2014). Reconfigurable Implementation of a CNN-UM Platform for Fast Dynamical Systems Simulation. In: De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. Lecture Notes in Electrical Engineering, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-319-04370-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04370-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04369-2

  • Online ISBN: 978-3-319-04370-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics