Skip to main content

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

Abstract

Design of modern antennas is undoubtedly a challenging task. An important part of the design process is the adjustment of geometry and material parameters to ensure that the antenna response satisfies prescribed performance specifications with respect to certain characteristics such as input impedance, radiation pattern, antenna efficiency, etc. (Volakis 2007; Schantz 2005; Petosa 2007; Balanis 2005). In this context, computationally inexpensive analytical models can only be used—in most cases—to obtain an initial estimate of the optimum design. This is particularly the case when certain interactions within the antenna itself and with the antenna environment (e.g., housing, installation fixture, feeding circuit, connectors) have to be taken into account. For these reasons, full-wave electromagnetic (EM) simulation plays an essential role in the design closure. Contemporary computational techniques—implemented in commercial simulation packages—are capable to adequately evaluate antenna reflection and radiation responses. On the other hand, full-wave simulations of realistic and finely discretized antenna models are computationally expensive: evaluation for a single combination of design parameters may take up to several hours. While this cost is acceptable from the design validation standpoint, it is usually prohibitive for design optimization that normally requires a large number of EM simulations of the antenna structure of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microw. Theory Tech. 54, 2153–2159 (2006)

    Article  Google Scholar 

  • Angiulli, G., Cacciola, M., Versaci, M.: Microwave devices and antennas modelling by support vector regression machines. IEEE Trans. Magn. 43, 1589–1592 (2007)

    Article  Google Scholar 

  • Ares-Pena, F.J., Rodriguez-Gonzalez, A., Villanueva-Lopez, E., Rengarajan, S.R.: Genetic algorithms in the design and optimization of antenna array patterns. IEEE Trans. Antennas Propag. 47, 506–510 (1999)

    Article  Google Scholar 

  • Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. Taylor & Francis Group, Bristol (2000)

    Google Scholar 

  • Balanis, C.A.: Antenna Theory, 3rd edn. Wiley-Interscience, Hoboken, NJ (2005)

    Google Scholar 

  • Bandler, J.W., Seviora, R.E.: Wave sensitivities of networks. IEEE Trans. Microw. Theory Tech. 20, 138–147 (1972)

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004a)

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004b)

    Article  Google Scholar 

  • Bevelacqua, P.J., Balanis, C.A.: Optimizing antenna array geometry for interference suppression. IEEE Trans. Antennas Propag. 55, 637–641 (2007)

    Article  Google Scholar 

  • Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space mapping. IEEE Microw. Mag. 11, 96–110 (2010)

    Article  Google Scholar 

  • Chung, Y.S., Cheon, C., Park, I.H., Hahn, S.Y.: Optimal design method for microwave device using time domain method and design sensitivity analysis-part II: FDTD case. IEEE Trans. Magn. 37, 3255–3259 (2001)

    Article  Google Scholar 

  • Couckuyt, I.: Forward and inverse surrogate modeling of computationally expensive problems. PhD Thesis, Ghent University (2013)

    Google Scholar 

  • CST Microwave Studio: CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2013)

    Google Scholar 

  • Director, S.W., Rohrer, R.A.: The generalized adjoint network and network sensitivities. IEEE Trans. Circ. Theory 16, 318–323 (1969)

    Article  Google Scholar 

  • Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  • Echeverria, D., Hemker, P.W.: Space mapping and defect correction. CMAM Int. Math. J. Comput. Methods Appl. Math. 5, 107–136 (2005)

    MATH  MathSciNet  Google Scholar 

  • Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  • Grimaccia, F., Mussetta, M., Zich, R.E.: Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag. 55, 781–785 (2007)

    Article  Google Scholar 

  • Gutmann, H.-M.: A radial basis function method for global optimization. J. Global Optim. 19, 201–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Haupt, R.L.: Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antennas Propag. 55, 577–582 (2007)

    Article  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River, NJ (1998)

    Google Scholar 

  • HFSS: Release 13.0, ANSYS. http://www.ansoft.com/products/hf/hfss/ (2010)

  • Jacobs, J.P.: Bayesian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics. IEEE Trans. Antennas Propag. 60, 2114–2118 (2012)

    Article  MathSciNet  Google Scholar 

  • Jacobson, P., Rylander, T.: Gradient-based shape optimization of conformal array antennas. IET Microw. Antennas Propag. 4, 200–209 (2010)

    Article  Google Scholar 

  • Jin, N., Rahmat-Samii, Y.: Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag. 55, 556–567 (2007)

    Article  Google Scholar 

  • Jin, N., Rahmat-Samii, Y.: Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications. IEEE Trans. Antennas Propag. 56, 1269–1279 (2008)

    Article  Google Scholar 

  • Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Kennedy, J.: The particle swarm: social adaptation of knowledge. Proc. 1997 Int. Conf. Evolutionary Computation, pp. 303−308. Indianapolis, IN (1997)

    Google Scholar 

  • Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Koziel, S.: Surrogate-based optimization of microwave structures using space mapping and kriging. Proc. European Microwave Conference, Rome, Italy, 28 September to 2 October 2009, pp. 1062–1065 (2009)

    Google Scholar 

  • Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2829–2837 (2010a)

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S.: Simulation-driven design in microwave engineering: methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence. Springer-Verlag, Germany (2011a)

    Google Scholar 

  • Koziel, S., Ogurtsov, S.: Simulation-driven design in microwave engineering: application case studies. In: Yang, X.S., Koziel, S. (eds.) Computational Optimization and Applications in Engineering and Industry, Series: Studies in Computational Intelligence. Springer-Verlag, Germany (2011b)

    Google Scholar 

  • Koziel, S. Ogurtsov, S.: Rapid optimization of dielectric resonator antennas using surrogate models. Proc. Loughborough Antennas & Propagation Conference, LAPC 2011 (2011g)

    Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K.: Space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  • Koziel, S., Meng, J., Bandler, J.W., Bakr, M.H., Cheng, Q.S.: Accelerated microwave design optimization with tuning space mapping. IEEE Trans. Microw. Theory Tech. 57, 383–394 (2009a)

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S., Szczepanski, S.: Rapid antenna design optimization using shape-preserving response prediction. Bull. Pol. Acad. Sci. Tech. Sci. 60, 143–149 (2012b)

    Google Scholar 

  • Li, W.T., Shi, X.W., Hei, Y.Q., Liu, S.F., Zhu, J.: A hybrid optimization algorithm and its application for conformal array pattern synthesis. IEEE Trans. Antennas Propag. 58, 3401–3406 (2008)

    Article  Google Scholar 

  • Nocedal, J., Wright, S.J.: Numerical Optimization, Springer Series in Operations Research. Springer, New York (2000)

    Google Scholar 

  • Pantoja, M.F., Meincke, P., Bretones, A.R.: A hybrid genetic algorithm space-mapping tool for the optimization of antennas. IEEE Trans. Antennas Propag. 55, 777–781 (2007)

    Article  Google Scholar 

  • Petko, J.S., Werner, D.H.: An autopolyploidy-based genetic algorithm for enhanced evolution of linear polyfractal arrays. IEEE Trans. Antennas Propag. 55, 583–593 (2007)

    Article  Google Scholar 

  • Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House, Atlanta, GA (2007)

    Google Scholar 

  • Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  • Rajo-Iglesias, E., Quevedo-Teruel, O.: Linear array synthesis using an ant-colony-optimization-based algorithm. IEEE Antennas Propag. Mag. 42, 70–79 (2007)

    Article  Google Scholar 

  • Roy, G.G., Das, S., Chakraborty, P., Suganthan, P.N.: Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Trans. Antennas Propag. 59, 110–118 (2011)

    Article  Google Scholar 

  • Schantz, H.: The Art and Science of Ultrawideband Antennas. Artech House, Atlanta, GA (2005)

    Google Scholar 

  • Selleri, S., Mussetta, M., Pirinoli, P., Zich, R.E., Matekovits, L.: Differentiated meta-PSO methods for array optimization. IEEE Trans. Antennas Propag. 56, 67–75 (2008)

    Article  Google Scholar 

  • Shaker, G.S.A., Bakr, M.H., Sangary, N., Safavi-Naeini, S.: Accelerated antenna design methodology exploiting parameterized Cauchy models. J. Prog. Electromag. Res. (PIER B) 18, 279–309 (2009)

    Article  Google Scholar 

  • Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comp. 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  • Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Comput. 14, 199–222 (2004)

    Article  Google Scholar 

  • Special issue on synthesis and optimization techniques in electromagnetic and antenna system design. IEEE Trans. Antennas Propag., 55(3), part I, pp. 518−785 (2007)

    Google Scholar 

  • Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Toivanen, J.I., Makinen, R.A.E., Jarvenpaa, S., Yla-Oijala, P., Rahola, J.: Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation. IEEE Trans. Antennas Propag. 57, 168–175 (2009)

    Article  MathSciNet  Google Scholar 

  • Volakis, J.L.: Antenna Engineering Handbook, 4th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  • Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30, 3197–3219 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, K.-L., Zhao, Y.-J., Wang, J., Cheng, M.K.K.: An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping. IEEE Trans. Microw. Theory Tech. 52, 393–402 (2004)

    Article  Google Scholar 

  • Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken, NJ (2010)

    Book  Google Scholar 

  • Zhang, Y., Pimpale, A., Meshram, M.K., Nikolova, N.K.: Printed antenna design using sensitivity analysis based on method of moment solution. IEEE Radio and Wireless Symposium, pp. 47–50 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Slawomir Koziel and Stanislav Ogurtsov

About this chapter

Cite this chapter

Koziel, S., Ogurtsov, S. (2014). Introduction. In: Antenna Design by Simulation-Driven Optimization. SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-04367-8_1

Download citation

Publish with us

Policies and ethics