Skip to main content

Cretaceous–Palaeogene Boundary Events in Texas: New Sections, Revised Micropalaeontological Interpretations, and Clarification of the Stratigraphy

  • Conference paper
  • First Online:
  • 181 Accesses

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Recent fieldwork (2009–2012) in the Brazos River area, Falls County, Texas, has resulted in the discovery of a number of new exposures that have allowed a reinterpretation of the Cretaceous–Palaeogene boundary events. Our data indicate that there was a single impact event with the seismic shock and resulting tsunami eroding the uppermost Maastrichtian surface, prior to the deposition of a number of storm-generated sandstones, the lower of which contains altered spherules, shell fragments, ichthyolith debris, and reworked microfossils. The overlying lower Palaeocene succession of mudstones and siltstones was deposited in a midshelf setting that is quite similar to that of the preceding uppermost Maastrichtian. The lower Palaeocene appears to record a Milankovitch cyclicity and, potentially, the Dan-C2 hyperthermal event.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adatte, T., Keller, G., & Baum, G. R. (2011). Age and origin of the Chicxulub impact and sandstone complex, Brazos River, Texas: Evidence from lithostratigraphy and sedimentology. In G. Keller, & T. Adatte (Eds.), The end-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Society for Sedimentary Geology special publication 100, 43–80.

    Google Scholar 

  • Alegret, L., Thomas, E., & Lohmann, K. C. (2012). End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences, 109(3), 728–732.

    Article  Google Scholar 

  • Chenet, A.-L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S. F. R., et al. (2009). Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 m-thick composite section. Journal of Geophysical Research,114, B06103. doi:10.1029/2008JB005644.

    Article  Google Scholar 

  • Dias, B. B., Hart, M. B., Smart, C. W., & Hall-Spencer, J. M. (2010). Modern seawater acidification: the response of foraminifera to high CO2 conditions in the Mediterranean Sea. Journal of the Geological Society, London,167, 843–846.

    Article  Google Scholar 

  • Donovan, A. D., Baum, G R., Blechschmidt, G. L., Loutit, T. S, Pflum, C. E., & Vail, P. R (1988). Sequence stratigraphic setting of the Cretaceous–Tertiary boundary in Central Alabama. In C. K. Wilgus, H. Posamentier, C. A. Ross, & C. G. St. C. Kendall (Eds), Sea-level changes: An integrated approach. SEPM Society for Sedimentary Geology special publication 42, 299–307.

    Google Scholar 

  • Fassett, J. E. (2000). Geology and Coal Resources of the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado. In M. A. Kirschbaum, L. N. R. Roberts, & L. R. H. Biewick (Eds.), Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah. (pp. 1–132). Denver: U.S. Geological Survey Professional Paper 1625-B, USGS.

    Google Scholar 

  • Hart, M. B. (2007). Late Cretaceous climates and foraminiferid distributions. In M. Williams, A. M. Haywood, F. J. Gregory, & D. N. Schmidt (Eds.), Deep-Time Perspectives on Climate Change, (pp. 235–250). London: The Micropalaeontological Society Special Publications, Geological Society.

    Google Scholar 

  • Hart, M. B., Yancey, T. E., Leighton, A. D., Miller, B., Liu, C., Smart, C. W., et al. (2012). The Cretaceous-Paleogene boundary on Brazos River, Texas: New stratigraphic sections and revised interpretations. Journal of the Gulf Coast Association of Geological Societies,1, 69–80.

    Google Scholar 

  • Keller, G., Adatte, T (2011). End-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Society for Sedimentary Geology special publication 100, 313 p.

    Google Scholar 

  • Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., et al. (2007). Chicxulub impact predates K-T boundary: New evidence from Brazos, Texas. Earth and Planetary Science Letters,255, 339–356.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Baum, G. R., & Berner, Z (2008). Reply to comment by Schulte et al. on “Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas”. Earth and Planetary Science Letters,269, 620–628.

    Article  Google Scholar 

  • Keller, G., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C., et al. (2011). Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India,78, 399–428.

    Article  Google Scholar 

  • Kuipe, K. F, Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R (2008). Synchronizing rock clocks of Earth history. Science,320, 500–504 and supporting on-line material. doi 10.1126/science.1154339.

    Article  Google Scholar 

  • MacLeod, K. G., Whitney, D. L., Huber, B. T., & Koeberl, C. (2007). Impact and extinction in remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geological Society of America Bulletin,119, 101–115.

    Article  Google Scholar 

  • Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol, J., et al. (2006). The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, (Cenozoic) at El Kef, Tunisia—original definition and revision. Episodes,29, 263–278.

    Article  Google Scholar 

  • Moy, A. D., Howard, W. R., Bray, S. G., & Trull, T. W. (2009). Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience,. doi:10.1038/NGEO460.

    Article  Google Scholar 

  • Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Feely, R. A., & Gnanadesikan, A. et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.

    Article  Google Scholar 

  • Pettit, L. R., Hart, M. B., Medina-Sánchez, A. N., Smart, C. W, Rodolfo-Metalpa, R., & Hall-Spencer, J. M. et al. (2013). Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Marine Pollution Bulletin (in press).

    Google Scholar 

  • Ryer, T. A., Phillips, R. E., Bohor, B. F., & Pollastro, R. M. (1980). Use of altered volcanic ash falls in stratigraphic studies of coal-bearing sequences: An example from the Upper Cretaceous Ferron Sandstone Member of the Manos Shale in central Utah. Geological Society of America Bulletin,91, 579–586.

    Article  Google Scholar 

  • Sauvage, J., Goderis, S., & Claeys, P. (2010). High-resolution platinum group elements and C-isotope analyses across the KT boundary in the Denver Basin. Geological Society of America, Abstracts and Program, Annual Meeting 2010, Denver, Colorado, No. 214–5.

    Google Scholar 

  • Schulte, P., & 40 additional authors. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science,327, 1214–1218.

    Article  Google Scholar 

  • Stanley, S. M. (2006). Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Palaeontological and experimental evidence. Palaeogeography, Palaeoecology, Palaeoecology,232, 214–236.

    Article  Google Scholar 

  • Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology,144, 3–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Hart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hart, M. et al. (2014). Cretaceous–Palaeogene Boundary Events in Texas: New Sections, Revised Micropalaeontological Interpretations, and Clarification of the Stratigraphy. In: Rocha, R., Pais, J., Kullberg, J., Finney, S. (eds) STRATI 2013. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-04364-7_8

Download citation

Publish with us

Policies and ethics