Skip to main content

Selected Aspects of Thermal-Hydraulics Modelling in Two-Phase Flows with Phase Change in Minichannels

  • Chapter
  • First Online:
Frontiers and Progress in Multiphase Flow I

Part of the book series: Frontiers and Progress in Multiphase Flow ((FPMF))

  • 1282 Accesses

Abstract

In the chapter some issues of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase are presented. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressure drop by the influence of heat flux. Presented are also the results of a peculiar M-shape distribution of heat transfer coefficient specific to flow boiling in minichannels. Finally, some attention is devoted to mathematical modeling of dryout phenomena. A five equation model enabling determination of the dryout location is presented, where the mass balance equations for liquid film, droplets and gas are supplemented by momentum equations for liquid film and two-phase core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B:

Blowing parameter, B = 2ϑ0/(cfu)

Bo:

Boiling number, Bo = q/(GhLG)

cf :

Friction factor

cp :

Specific heat, J/kg K

C:

Concentration

Con:

Constraint number, Con = (σ/g/(ρl − ρv))0.5/d

d:

Channel inner diameter, m

E:

Energy dissipation, W/m3

f:

Friction factor

f1, f1z :

Functions

F:

Enhancement factor, function

g:

Gravity, m/s2

G:

Mass flux, kg/m2 s

h:

Enthalpy, J/kg

hlv :

Latent heat of evaporation, J/kg

k:

Mass transfer coefficient, m/s2

l:

Bubble characteristic length, m

L:

Channel length, m

p:

Pressure, Pa

P:

Correction in Eq. (1.46)

Pr:

Prandtl number

q:

Heat flux, W/m2

R:

Two-phase flow multiplier

RMS :

Two-phase flow multiplier due to Müller-Steinhagen and Heck [17]

Re:

Reynolds number

S:

Suppression factor

x:

Quality

Xtt :

Martinelli parameter

T:

Temperature, K

u, w, ϑ0 :

Velocity, m/s

z:

Distance along the channel, m

α:

Heat transfer coefficient, W/m2 K

δ:

Thickness of liquid film, m

ξ:

Drag coefficient

λ:

Thermal conductivity, W/m K

μ:

Dynamic viscosity, Pa s

ρ:

Density, kg/m3

σ:

Surface tension, N/m

τ:

Shear stress, Pa

c:

Core

cb:

Convective boiling

D:

Deposition

E:

Entrainment

f:

Forced flow, liquid film

G:

Saturated vapour

i:

Interface

k:

Droplets

kr:

Critical

L:

Liquid

LO:

Liquid only

mt:

Mass transfer

PB:

Pool boiling

TP:

Two-phase flow

TPB:

Two-phase boiling

TPK:

Two-phase condensation

0:

Beginning of annular flow

∞:

Undisturbed flow

References

  1. S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, in Proceedings of Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Thessaloniki, pp. 129–146 (2001)

    Google Scholar 

  2. P. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small diameter channels. Appl. Therm. Eng. 17(8–10), 705–715 (1997)

    Article  Google Scholar 

  3. L. Cheng, G. Ribatski, J. Moreno-Quibén, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: part I—a two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops. Int. J. Heat Mass Transfer 51, 111–124 (2008)

    Article  MATH  Google Scholar 

  4. L. Cheng, G. Ribatski, J. Moreno-Quibén, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: part II—a two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops. Int. J. Heat Mass Transf. 51, 125–135 (2008)

    Article  MATH  Google Scholar 

  5. J.R. Thome, L. Consolini, Mechanisms of boiling in micro-channels: critical assessment, in Proceedings of 5th International Conference on Transport Phenomena in Multiphase Systems, 30 June 30–3 July 2008, Bialystok, Poland (2008)

    Google Scholar 

  6. D. Mikielewicz, J. Mikielewicz, J. Tesmar, Improved semi-empirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes. Int. J. Heat Mass Transf. 50, 3949–3956 (2007)

    Article  MATH  Google Scholar 

  7. D. Mikielewicz, A new method for determination of flow boiling heat transfer coefficient in conventional diameter channels and minichannels. Heat Transf. Eng. 31(4), 276–287 (2010)

    Article  Google Scholar 

  8. D. Baker, Simultaneous flow of oil and gas. Oil Gas J 53, 183–195 (1954)

    Google Scholar 

  9. Y. Taitel, D. Barnea, A.E. Dukler, Modeling flow pattern transitions for steady upward gas–liquid flow in vertical tubes. AIChE J. 26(3), 345–354 (1980)

    Article  Google Scholar 

  10. G.F. Hewitt, D.N. Roberts, Studies of two-phase flow patterns by simultaneous X-ray and flash photography, AERE-M 2159, London (1969)

    Google Scholar 

  11. T. Oshinowo, M.E. Charles, Vertical two-phase flow. Part I. Flow pattern correlations. Can. J. Chem. Eng. 52, 25–35 (1974)

    Article  Google Scholar 

  12. K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Gas–liquid two-phase flow in microchannels. Part I: two-phase flow patterns. Int. J. Multiphase Flow 25, 377–394 (1999)

    Article  MATH  Google Scholar 

  13. P.M.-Y. Chung, M. Kawaji, The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int. J. Multiphase Flow 30, 735–761 (2004)

    Article  MATH  Google Scholar 

  14. S.M. Zivi, Estimation of steady state steam void fraction by means of the principle of minimum entropy production. Trans. ASME (J. Heat Transf.) 86, 247–252 (1964)

    Google Scholar 

  15. R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem. Eng. Prog. 45, 39–45 (1949)

    Google Scholar 

  16. D. Chisholm, Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 16, 347–358 (1973)

    Article  Google Scholar 

  17. R. Muller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Prog. 20, 297–308 (1986)

    Article  Google Scholar 

  18. L. Friedel, Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow, in European Two-Phase Flow Group Meeting, Paper E2, Ispra, Italy (1979)

    Google Scholar 

  19. K.M. Mishima, T. Hibiki, Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow 22(4), 703–712 (1996)

    Article  MATH  Google Scholar 

  20. T.N. Tran, M.-C. Chyu, M.W. Wambsganss, D.M. France, Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int. J. Multiphase Flow 26, 1739–1754 (2000)

    Article  MATH  Google Scholar 

  21. M. Zhang, R.L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp. Therm. Fluid Sci. 25, 131–139 (2001)

    Article  Google Scholar 

  22. J.R. Thome, Boiling of new refrigerants: a state-of-the-art review”. Int. J. Refrig. 19, 435–457 (1996)

    Article  Google Scholar 

  23. A.E. Bergles, V.J.H. Lienhard, G.E. Kendall, P. Griffith, Boiling and evaporation in small diameter channels. Heat Transf. Eng. 24(1), 18–40 (2003)

    Article  Google Scholar 

  24. J.R. Thome, Boiling in microchannels: a review of experiment and theory. Int. J. Heat Fluid Flow 25, 128–139 (2004)

    Article  Google Scholar 

  25. C.E. Dengler, J.N. Addoms, Heat transfer mechanism for vaporisation of water in vertical tube. Chem. Eng. Prog. Symp. Ser. 52(18), 95–103 (1956)

    Google Scholar 

  26. S.A. Guerrieri, R.D. Talty, A study of heat transfer to organic liquids in single tube natural circulation vertical tube boilers. Chem. Eng. Prog. Symp. Ser. 52(18), 69–77 (1956)

    Google Scholar 

  27. V.E. Schrock, L.M. Grossman, Forced convection boiling studies. Institute of Engineering Research, University of California, Report 73308-UCX-2182 (1959)

    Google Scholar 

  28. J.G. Collier, D.J. Pulling, Heat transfer to two-phase gas-liquid systems”, Report AERE-R3908 (1962)

    Google Scholar 

  29. M.M. Shah, Chart correlation for saturated boiling heat transfer: Equations and further study. ASHRAE Trans. 88, I, 185–196 (1982)

    Google Scholar 

  30. S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J. Heat Transf. 112, 219–228 (1989)

    Article  Google Scholar 

  31. K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli”. Int. J. Heat Mass Transf. 29, 351–358 (1986)

    Article  MATH  Google Scholar 

  32. W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME 74, 969 (1952)

    Google Scholar 

  33. J.C. Chen, Correlation for boiling heat-transfer to saturated fluids in convective flow. Ind. Chem. Eng. Proc. Des. Dev. 5(3), 322–339 (1996)

    Article  Google Scholar 

  34. S.S. Kutateładze, Boiling heat transfer. Int. J. Heat Mass Transfer 4, 31–45 (1961)

    Article  Google Scholar 

  35. D. Steiner, J. Taborek, Flow boiling heat transfer in vertical tubes correlated by asymptotic model. Heat Transf. Eng. 23(2), 43–68 (1992)

    Article  Google Scholar 

  36. H.K. Forster, N. Zuber, Dynamics of vapour bubbles and boiling heat-transfer. AIChE J. 1, 531–535 (1955)

    Google Scholar 

  37. M.G. Cooper, Saturation nucleate pool boiling: a simple correlation. Int. Chem. Eng. Symp. 86, 785–793 (1984)

    Google Scholar 

  38. J. Mikielewicz, Semi-empirical method of determining the heat transfer coefficient for subcooled saturated boiling in a channel. Int. J. Heat Transf. 17, 1129–1134 (1973)

    Article  Google Scholar 

  39. G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int. J. Heat Mass Transf. 25(7), 945–960 (1982)

    Article  Google Scholar 

  40. M. Steinke, S. Kandlikar, An experimental investigation of flow boiling characteristics of water in parallel microchannels. J. Heat Transf. 126(4), 518–526 (2004)

    Article  Google Scholar 

  41. N. Kattan, J.R. Thome, D. Favrat, Flow boiling in horizontal tubes: part 3—development of a new heat transfer model based on flow pattern, Trans. ASME, 120, 156–165 (1998)

    Google Scholar 

  42. L. Wojtan, T. Ursenbacher, J.R. Thome, Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int. J. Heat Mass Transf. 48, 2970–2985 (2005)

    Article  Google Scholar 

  43. R.T. Lahey, D.A. Drew, An analysis of two-phase flow and heat transfer using a multidimensional, multi-field, two-fluid computational fluid dynamics (CFD) model, in Japan/US Seminar on Two-Phase Flow Dynamics, 5–8 June 2000, Santa Barbara, California, (2000)

    Google Scholar 

  44. M. Podowski, Understanding multiphase flow and heat transfer: perception, reality, future needs. Arch. Thermodyn. 26(3), 3–20 (2005)

    Google Scholar 

  45. A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, Condensation of halogenated refrigerants inside Smooth tubes. HVAC Res. 8(4), 429–451 (2002)

    Article  Google Scholar 

  46. J. El Hajal, J.R. Thome, A. Cavallini, Condensation in horizontal tubes, part 1: two-phase flow pattern map. Int. J. Heat Mass Transf. 46(18), 3349–3363 (2003)

    Article  MATH  Google Scholar 

  47. J.R. Thome, J. El Hajal, A. Cavallini, Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int. J. Heat Mass Transf. 46(18), 3365–3387 (2003)

    Article  MATH  Google Scholar 

  48. S. Garimella, Condensation flow mechanisms in microchannels: basis for pressure drop and heat transfer models. Heat Transf. Eng. 25(3), 104–116 (2004)

    Article  Google Scholar 

  49. W.W. Akers, H.A. Deans, O.K. Crosser, Condensation heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55(29), 171–176 (1959)

    Google Scholar 

  50. M.M. Shah, A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transf. 22(4), 547–556 (1979)

    Article  Google Scholar 

  51. D.P. Traviss, W.M. Rohsenow, Flow regimes in horizontal two-phase flow with condensation. ASHRAE Trans. 79(Part 2), 31–39 (1973)

    Google Scholar 

  52. M.K. Dobson, J.C. Chato, Condensation in smooth horizontal tubes. J. Heat Transf. Trans. ASME 120(1), 193–213 (1998)

    Article  Google Scholar 

  53. A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, C. Zilio, Condensation inside and outside smooth and enhanced tubes—a review of recent research”. Int. J. Heat Mass Transf. 26, 373–392 (2002)

    Google Scholar 

  54. G. Breber, J.W. Palen, J. Taborek, Prediction of horizontal tubeside condensation of pure components using flow regime criteria. J. Heat Transf. Trans. ASME 102(3), 471–476 (1980)

    Article  Google Scholar 

  55. P.G. Kosky, F.W. Staub, Local condensing heat transfer coefficients in the annular flow regime. AIChE J. 17(5), 1037–1043 (1971)

    Article  Google Scholar 

  56. D. Mikielewicz, J. Mikielewicz, A common method for calculation of flow boiling and flow condensation heat transfer coefficients in minichannels with account of non-adiabatic effects. Heat Transf. Eng. 32(10), 1173–1181 (2011)

    Article  Google Scholar 

  57. E.L. Ananiev, On the mechanism of heat transfer in nucleate boiling flow of water in a tube against the Reynolds analogy, Convective Heat Transfer in Single and Two-Phase Flows ed. by V.M. Borishansky (Energia, Leningrad, 1964)

    Google Scholar 

  58. M.B. Ould Didi, N. Kattan, J.R. Thome, Prediction of two-phase pressure gradients of refrigerants in horizontal tubes. Int. J. Refrig. 25, 935–947 (2002)

    Article  Google Scholar 

  59. L. Sun, K. Mishima, Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. Int. J. Multiphase Flows 35, 47–54 (2009)

    Article  Google Scholar 

  60. C.B. Chiou, D.C. Lu, C.Y. Liao, Y.Y. Su, Experimental study of forced convective boiling for non-azeotropic refrigerant mixtures R-22/R-124 in horizontal smooth tube. Appl. Therm. Eng. 29, 1864–1871 (2009)

    Article  Google Scholar 

  61. J. Mikielewicz, Influence of phase changes on shear stresses at the interfaces. Trans. Inst. Fluid Flow Mach. 76, 31–39 (1978). (in Polish)

    Google Scholar 

  62. S.S. Kutateładze, A.I. Leontiev, Turbulent boundary layers in compressible gases (Academic Press, NY, 1964)

    MATH  Google Scholar 

  63. G.B. Wallis, One dimensional two-phase flow (McGraw-Hill, New York, 1969)

    Google Scholar 

  64. L. Bai, G. Lin, H. Zhang, D. Wen, Mathematical modelling of steady-state operation of a loop heat pipe. Appl. Therm. Eng. 29, 2643–2654 (2009)

    Article  Google Scholar 

  65. T. Bohdal, H. Charun, M. Sikora, Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int. J. Heat Mass Transf. 54, 1963–1974 (2011)

    Article  Google Scholar 

  66. A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int. J. Heat Mass Transf. (2007)

    Google Scholar 

  67. J.G. Collier, J.R. Thome, Convection Boiling and Condensation, 3rd edn. (McGraw-Hill, New York, 1994)

    Google Scholar 

  68. W. Qu, I. Mudawar, Flow boiling heat transfer in two-phase micro-channel heat sink—II. Annular two-phase flow model. Int. J. Heat Mass Transf. 46, 2773–2784 (2003)

    Article  Google Scholar 

  69. R. Revellin, P. Haberschill, J. Bonjour, J.R. Thome, Conditions of liquid film dryout during saturated flow boiling in microchannels. Chem. Eng. Sci. 63, 5795–5801 (2008)

    Article  Google Scholar 

  70. M. Gliński, Study of critical heat flux in small diameter channels. PhD Thesis. Gdansk University of Technology (2010)

    Google Scholar 

  71. R.J. Moffat, Describing the uncertainties in experimental results”. Exp. Therm. Fluid Sci. 1, 3–17 (1988)

    Article  Google Scholar 

  72. M.M. Mahmoud, D.B. Kenning, T. Karayiannis, Surface effects and evaluation of prediction methods in boiling flow of R134a in microtubes, in 48th European Two-Phase Flow Group Meeting, 28 June–1 July 2010, Brunel University, London (2010)

    Google Scholar 

  73. A. Bar-Cohen, E. Rahim, Modelling and prediction of two-phase microgap channel heat transfer characteristics. Heat Transf. Eng. 38(8), 601–625 (2010)

    Google Scholar 

  74. A.-B.R. Zrooga, Experimental and theoretical study of flow boiling and dryout phenomenon of ethanol in vertical minitubes. PhD Thesis, Gdansk University of Technology (2010)

    Google Scholar 

  75. M. Klugmann, Heat transfer intensification in flow boiling in small diameter channels. PhD Thesis, Gdansk University of Technology (in Polish) (2009)

    Google Scholar 

  76. D. Shiferaw, X. Huo, T.G. Karayiannis, D.B.R. Kenning, Examination of heat transfer correlations and a model for flow boiling of R134a in small diameter tubes. Int. J. Heat Mass Transf. 50, 5177–5193 (2007)

    Article  MATH  Google Scholar 

  77. J.R. Thome, Chapter I, Wolverine Engineering Databook III (2007). www.wlv.com/products

  78. A.M. Jacobi, J.R. Thome, Heat transfer model for evaporation of elongated bubble flows in microchannels. J. Heat Transf. 124, 1131–1136 (2002)

    Article  Google Scholar 

  79. W. Owhaib, Experimental heat transfer, pressure drop and flow visualization of R134a in vertical mini/micro tubes. PhD Thesis, KTH, Stockholm (2007)

    Google Scholar 

  80. H.-K. Oh, C.-H. Son, Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube, Exp. Therm. Fluid Sci. 35, 706–716 (2011)

    Google Scholar 

  81. M. Matkovic, A. Cavallini, D. Del Col, L. Rossetto, Experimental study on condensation heat transfer inside a single circular minichannel. Int. J. Heat Mass Transf. 52, 2311–2323 (2009)

    Article  Google Scholar 

  82. T. Okawa, A. Kotani, I. Kataoka, M. Naitoh, Prediction of the critical heat flux in annular regime in various vertical channels. Nucl. Eng. Des. 229, 223–236 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in the paper was partially funded from the Polish Ministry for Science and Education research project No. N512 459036 in years 2009–2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Mikielewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mikielewicz, D. (2014). Selected Aspects of Thermal-Hydraulics Modelling in Two-Phase Flows with Phase Change in Minichannels. In: Cheng, L. (eds) Frontiers and Progress in Multiphase Flow I. Frontiers and Progress in Multiphase Flow. Springer, Cham. https://doi.org/10.1007/978-3-319-04358-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04358-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04357-9

  • Online ISBN: 978-3-319-04358-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics