Skip to main content

Finding Disjoint Paths in Split Graphs

  • Conference paper
SOFSEM 2014: Theory and Practice of Computer Science (SOFSEM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8327))

Abstract

The well-known Disjoint Paths problem takes as input a graph G and a set of k pairs of terminals in G, and the task is to decide whether there exists a collection of k pairwise vertex-disjoint paths in G such that the vertices in each terminal pair are connected to each other by one of the paths. This problem is known to NP-complete, even when restricted to planar graphs or interval graphs. Moreover, although the problem is fixed-parameter tractable when parameterized by k due to a celebrated result by Robertson and Seymour, it is known not to admit a polynomial kernel unless NP ⊆ coNP/poly. We prove that Disjoint Paths remains NP-complete on split graphs, and show that the problem admits a kernel with O(k 2) vertices when restricted to this graph class. We furthermore prove that, on split graphs, the edge-disjoint variant of the problem is also NP-complete and admits a kernel with O(k 3) vertices. To the best of our knowledge, our kernelization results are the first non- trivial kernelization results for these problems on graph classes.

This research is supported by the Research Council of Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comp. Syst. Sci. 75(8), 423–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M. (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 629–638. IEEE Computer Society (2009)

    Google Scholar 

  3. Bodlaender, H.L., Thomasse, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comp. Sci. 412(35), 4570–4578 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  5. Diestel, R.: Graph Theory, Electronic edn. Springer (2005)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)

    Google Scholar 

  7. Dvorak, Z., Král’, D., Thomas, R.: Three-coloring triangle-free planar graphs in linear time. In: Mathieu, C. (ed.) SODA 2009, pp. 1176–1182. ACM-SIAM (2009)

    Google Scholar 

  8. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comp. 5, 691–703 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frank, A.: Packing paths, circuits, and cuts – a survey. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows, and VLSI-Layout, pp. 47–100. Springer, Berlin (1990)

    Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Disc. Math. 57 (2004)

    Google Scholar 

  11. Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs. Theor. Comput. Sci. 359, 188–199 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kammer, F., Tholey, T.: The k-disjoint paths problem on chordal graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)

    MATH  MathSciNet  Google Scholar 

  14. Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in quadratic time. J. Comb. Theory B 102, 424–435 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: Mathieu, C. (ed.) SODA 2009, pp. 1146–1155. ACM-SIAM (2009)

    Google Scholar 

  16. Kramer, M., van Leeuwen, J.: The complexity of wirerouting and finding minimum area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)

    Google Scholar 

  17. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsletter 5(3), 31–36 (1975)

    Article  Google Scholar 

  18. Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J. Comp. 3, 256–270 (1996)

    MathSciNet  Google Scholar 

  19. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete for series-parallel graphs. Discrete Applied Math. 115, 177–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Reed, B.A.: Tree width and tangles: A new connectivity measure and some applications. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 87–162. Cambridge University Press (1997)

    Google Scholar 

  21. Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in planar graphs in linear time. In: Contemp. Math., vol. 147, pp. 295–301. Amer. Math. Soc., Providence (1993)

    Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J. Comb. Theory B 63(1), 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied Math. 8, 85–89 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vygen, J.: Disjoint paths. Technical report 94816, Research Institute for Discrete Mathematics, University of Bonn (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Heggernes, P., van ’t Hof, P., van Leeuwen, E.J., Saei, R. (2014). Finding Disjoint Paths in Split Graphs. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds) SOFSEM 2014: Theory and Practice of Computer Science. SOFSEM 2014. Lecture Notes in Computer Science, vol 8327. Springer, Cham. https://doi.org/10.1007/978-3-319-04298-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04298-5_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04297-8

  • Online ISBN: 978-3-319-04298-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics