Skip to main content

Applying Haar Wavelets in Damage Detection Using Machine Learning Methods

  • Chapter
  • First Online:
Haar Wavelets

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 2074 Accesses

Abstract

The basic idea of the present Chapter is to establish directly an input-output relationship between the modal responses and the delamination locations/sizes using back-propagation neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayissa, W., Haritos, N., Thelandersson, S.: Vibration-based structural damage identification using wavelet transform. Mech. Syst. Signal Process. 22, 1194–1215 (2008)

    Article  Google Scholar 

  2. Chakraborty, D.: Artificial neural network based delamination prediction in laminated composites. Mater. Des. 26, 1–7 (2005)

    Article  Google Scholar 

  3. Chukwujekwu, O., Chandrashekhara, K., Jiang, Y.: Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural network. NDT E Int. 30, 326 (1997)

    Google Scholar 

  4. Della, C., Shu, D.: Vibration of delaminated composite laminates: a review. Appl. Mech. Rev. 60, 1–20 (2007)

    Article  Google Scholar 

  5. Deraemaeker, A., Reynders, E., Roeck, G.D., Kullaa, J.: Vibration-based structural health monitoring using output-only measurements under changing environment. Mech. Syst. Sign. Proces. 22, 34–56 (2008)

    Article  Google Scholar 

  6. Fang, X., Luo, H., Tang, J.: Structural damage detection using neural network with learning rate improvement. Comput. Struct. 83, 2150–2161 (2005)

    Article  Google Scholar 

  7. Feklistova, L., Hein, H.: Delamination identification using machine learning methods and Haar wavelets. Comput. Assist. Methods Eng. Sci. 19, 351–360 (2012)

    Google Scholar 

  8. Gentile, A., Messina, A.: On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams. Int. J. Solids Struct. 40, 295–315 (2003)

    Article  MATH  Google Scholar 

  9. Grabowska, J., Palacz, M., Krawczuk, M.: Damage identification by wavelet analysis. Mech. Syst. Signal Process. 22, 1623–1635 (2008)

    Article  Google Scholar 

  10. Hadjileontiadis, L., Douka, E., Trochidis, A.: Fractal dimension analysis for crack identification in beam structures. Mech. Syst. Signal Process. 19, 659–674 (2005)

    Article  Google Scholar 

  11. Han, J., Ren, W., Sun, Z.: Wavelet packet based damage identification of beam structures. Int. J. Solids Struct. 42, 6610–6627 (2005)

    Article  MATH  Google Scholar 

  12. Hein, H., Feklistova, L.: Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. Syst. Signal Process. 25, 2257–2270 (2011)

    Article  Google Scholar 

  13. Jin, X., Gupta, S., Mukherjee, K., Ray, A.: Wavelet-based feature extraction using probabilistic finite state automata for pattern classification. Pattern Recogn. 44, 1343–1356 (2011)

    Article  MATH  Google Scholar 

  14. Kim, H., Melhem, H.: Damage detection of structures by wavelet analysis. Eng. Struct. 26, 347–362 (2004)

    Article  Google Scholar 

  15. Kim, J., Ryu, Y., Cho, H., Stubbs, N.: Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Eng. Struct. 25, 57–67 (2003)

    Article  Google Scholar 

  16. Li, Z., Yang, X.: Damage identification for beams using ANN based on statistical property of structural responses. Comput. Struct. 86, 64–71 (2008)

    Article  Google Scholar 

  17. Luo, H., Hanagud, S.: Dynamics of delaminated beams. Int. J. Solids Struct. 37, 1501–1519 (2000)

    Article  MATH  Google Scholar 

  18. Martins, J., Tomas, P., Sousa, L.: Neural code metrics: analysis and application to the assessment of neural models. Neurocomputing 72, 2337–2350 (2009)

    Article  Google Scholar 

  19. Mujumdar, P., Suryanarayan, S.: Flexural vibrations of beams with delaminations. J. Sound Vib. 125, 441–461 (1988)

    Article  MATH  Google Scholar 

  20. Paipetis, S., Dimarogonas, A.: Anal. Methods Rotor Dyn. Elsevier Applied Science, London (1986)

    Google Scholar 

  21. Reddy, J.: Mechanics of laminated composite plates. CRC Press (1997)

    Google Scholar 

  22. Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J. Sound Vib. 297, 536–550 (2006)

    Article  Google Scholar 

  23. Shen, M., Grady, J.: Free vibrations of delaminated beams. AIAA J. 30, 1361–1370 (1992)

    Article  Google Scholar 

  24. Shu, D., Della, C.: Free vibration analysis of composite beams with two non-overlapping delaminations. Int. J. Mech. Sci. 46, 509–526 (2004)

    Article  MATH  Google Scholar 

  25. Su, Z., Yang, C., Pan, N., Ye, L., Zhou, L.: Assessment of delamination in composite beams using shear horizontal (SH) wave mode. Compos. Sci. Technol. 67, 244–251 (2007)

    Article  Google Scholar 

  26. Sun, Z., Chang, C.: Structural damage assessment based on wavelet packet transform. J. Struct. Eng. 128, 1354–1361 (2002)

    Article  Google Scholar 

  27. Tracy, J., Pardoen, G.: Effect of delamination on the natural frequencies of composite laminates. J. Compos. Mater. 21, 1200–1215 (1990)

    Google Scholar 

  28. Valoor, M., Chandrashekhara, K.: A thick composite-beam model for delamination prediction by the use of neural networks. Compos. Sci. Technol. 60, 1773–1779 (2000)

    Article  Google Scholar 

  29. Wang, Q., Deng, X.: Damage detection with spatial wavelets. Int. J. Solids Struct. 36, 3443–3468 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Waszczyszyn, Z., Ziemianski, L.: Neural netwoks in mechanics of structures and materials—new results and prospects of applications. Comput. Struct. 79, 2261–2276 (2001)

    Article  Google Scholar 

  31. Wei, Z., Yam, L., Cheng, L.: Detection of internal delamination in multi-layer composites using wavelet packets combined with modal parameter analysis. Compos. Struct. 64, 377–387 (2004)

    Article  Google Scholar 

  32. Yam, L., Yan, Y., Jiang, J.: Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Compos. Struct. 60, 403–412 (2003)

    Article  Google Scholar 

  33. Yam, L., Yan, Y., Jiang, J.: Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Appl. Mech. Rev. 60, 1–20 (2007)

    Article  Google Scholar 

  34. Yan, Y., Cheng, L., Wu, Z., Yam, L.: Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 21, 2198–2211 (2007)

    Article  Google Scholar 

  35. Yan, Y., Yam, L.: Detection of delamination damage in composite plates using energy spectrum of structural dynamic responses decomposed by wavelet analysis. Comput. Struct. 82, 347–358 (2004)

    Article  Google Scholar 

  36. Yang, Z., Wang, L., Wang, H., Ding, Y., Dang, X.: Damage detection in composite structures using vibration response under stochastic excitation. J. Sound Vib. 325, 755–768 (2009)

    Article  Google Scholar 

  37. Zhang, Z., Shankar, K., Ray, T., Morozov, E., Tahtali, M.: Vibration-based inverse algorithms for detection of delamination in composites. Compos. Struct. 102, 226–236 (2013)

    Article  Google Scholar 

  38. Zheng, S., Li, Z., Wang, H.: A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams. Expert Syst. Appl. 38, 11837–11842 (2011)

    Google Scholar 

  39. Zou, Y., Tong, L., Steven, G.: Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures - a review. J. Sound Vib. 230, 357–378 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Lepik .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lepik, Ü., Hein, H. (2014). Applying Haar Wavelets in Damage Detection Using Machine Learning Methods. In: Haar Wavelets. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-04295-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04295-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04294-7

  • Online ISBN: 978-3-319-04295-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics