Advertisement

Simplicity Is Worse Than Theft: A Constraint-Based Explanation of a Seemingly Counter-Intuitive Russian Saying

  • Martine CeberioEmail author
  • Olga Kosheleva
  • Vladik Kreinovich
Chapter
  • 1.1k Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 539)

Abstract

In many practical situations, simplified models, models that enable us to gauge the quality of different decisions reasonably well, lead to far-from-optimal situations when used in searching for an optimal decision. There is even an appropriate Russian saying: simplicity is worse than theft. In this paper, we provide a mathematical explanation of this phenomenon.

Keywords

Objective Function Mathematical Economic Mathematical Explanation Optimal Transportation Global Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chakrabarti, B.K., Chakraborti, A., Chatterjee, A.: Econophysics and Sociophysics: Trends and Perspectives. Wiley-VCH, Berlin (2006)CrossRefGoogle Scholar
  2. 2.
    Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K.: Econophysics of Wealth Distributions. Springer-Verlag Italia, Milan (2005)CrossRefGoogle Scholar
  3. 3.
    Farmer, J.D., Lux, T.: Applications of statistical physics in economics and finance. A Special Issue of the Journal of Economic Dynamics and Control 32(1), 1–320 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Gabaix, X., Parameswaran, G., Vasiliki, P., Stanley, H.E.: Understanding the cubic and half-cubic laws of financial fluctuations. Physica A 324, 1–5 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Leontieff, W.: Input-Output Economics. Oxford University Press, New York (1986)Google Scholar
  6. 6.
    Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  7. 7.
    McCauley, J.: Dynamics of Markets, Econophysics and Finance. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Wiley Publishers, New York (2000)zbMATHGoogle Scholar
  9. 9.
    Roehner, B.: Patterns of Speculation - A Study in Observational Econophysics. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Romanovsky, J.V.: Lectures on Mathematical Economics. St. Petersburg University, Russia (1972)Google Scholar
  11. 11.
    Shmelev, N., Popov, V.: The Turning Point. Doubleday, New York (1989)Google Scholar
  12. 12.
    Stanley, H.E., Amaral, L.A.N., Gopikrishnan, P., Plerou, V.: Scale invariance and universality of economic fluctuations. Physica A 283, 31–41 (2000)CrossRefGoogle Scholar
  13. 13.
    Stoyanov, S.V., Racheva-Iotova, B., Rachev, S.T., Fabozzi, F.J.: Stochastic models for risk estimation in volatile markets: a survey. Annals of Operations Research 176, 293–309 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Vasiliki, P., Stanley, H.E.: Stock return distributions: tests of scaling and universality from three distinct stock markets. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 77(3) (2008), Publ. 037101 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martine Ceberio
    • 1
    Email author
  • Olga Kosheleva
    • 1
  • Vladik Kreinovich
    • 1
  1. 1.University of Texas at El PasoEl PasoUSA

Personalised recommendations