Advertisement

Graph Subdivision Methods in Interval Global Optimization

  • Sergey P. Shary
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 539)

Abstract

The work advances a new class of global optimization methods, called graph subdivision methods, that are based on simultaneous adaptive subdivision of both the function’s domain of definition and the range of values. An application to interval linear systems is given.

Keywords

global optimization interval analysis adaptive subdivision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2004)zbMATHGoogle Scholar
  2. 2.
    Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized Notation in Interval Analysis. Computational Technologies 15(1), 7–13 (2010)zbMATHGoogle Scholar
  3. 3.
    Kearfott, R.B.: Rigorous Global Search. Continuous Problems. Kluwer, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  6. 6.
    Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood, Halsted Press, Chichester, New York (1988)zbMATHGoogle Scholar
  7. 7.
    Semenov, A.L.: Solving optimization problems with help of the UniCalc solver. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations, pp. 211–225. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  8. 8.
    Shary, S.P.: On Optimal Solution of Interval Linear Equations. SIAM Journal on Numerical Analysis 32(2), 610–630 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Shary, S.P.: A Surprising Approach in Interval Global Optimization. Reliable Computing 7(6), 497–505 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sergey P. Shary
    • 1
  1. 1.Institute of Computational TechnologiesNovosibirskRussia

Personalised recommendations