Advertisement

An Auto-validating Rejection Sampler for Differentiable Arithmetical Expressions: Posterior Sampling of Phylogenetic Quartets

  • Raazesh SainudiinEmail author
Chapter
  • 1.1k Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 539)

Abstract

We introduce an efficient extension of a recently introduced auto-validating rejection sampler that is capable of producing independent and identically distributed (IID) samples from a large class of target densities with locally Lipschitz arithmetical expressions. Our extension is restricted to target densities that are differentiable. We use the centered form, as opposed to the natural interval extension, to get tighter range enclosures of the differentiable multivariate target density using interval extended gradient differentiation arithmetic. By using the centered form we are able to sample one hundred times faster from the posterior density over the space of phylogenetic trees with four leaves (quartets).

Keywords

interval analysis centered form phylogentic inference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chor, B., Hendy, M., Holland, B., Penny, D.: Multiple maxima of likelihood in phylogenetic trees: An analytic approach. Mol. Biol. Evol. 17, 1529–1541 (2000)Google Scholar
  2. 2.
    Evans, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the Ising model. Advances in Applied Probability 10, 410–433 (2000)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)CrossRefGoogle Scholar
  4. 4.
    Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Sunderland (2003)Google Scholar
  5. 5.
    Jones, G., Hobert, J.: Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statistical Science 16(4), 312–334 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hofschuster, W., Krämer, W.: C-XSC 2.0 – A C++ library for extended scientific computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Num. Software with Result Verification. LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Moore, R.E.: Interval analysis. Prentice-Hall (1967)Google Scholar
  8. 8.
    Mossel, E., Vigoda, E.: Phylogenetic MCMC algorithms are misleading on mixtures of trees. Science 309, 2207–2209 (2005)CrossRefGoogle Scholar
  9. 9.
    Rall, L.B.: Automatic differentiation, techniques and applications. LNCS, vol. 120. Springer, Heidelberg (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ratschek, H.: Centered forms. SIAM Journal on Numerical Analysis 17(5), 656–662 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Sainudiin, R., York, T.: Auto-validating von Neumann rejection sampling from small phylogenetic tree spaces. Algorithms for Molecular Biology 4, 1 (2009)CrossRefGoogle Scholar
  12. 12.
    Sainudiin, R., York, T.: An auto-validating, trans-dimensional, universal rejection sampler for locally Lipschitz arithmetical expressions. Reliable Computing 18, 15–54 (2013)MathSciNetGoogle Scholar
  13. 13.
    Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. Journal of Global Optimization 33(4), 541–562 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press (2003)Google Scholar
  15. 15.
    von Neumann, J.: Various techniques used in connection with random digits. In: Von Neumann, J. (ed.) Collected Works, vol. V. Oxford University Press (1963)Google Scholar
  16. 16.
    Walker, A.J.: An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3, 253–256 (1977)CrossRefzbMATHGoogle Scholar
  17. 17.
    Williams, D.: Weighing the Odds: A Course in Probability and Statistics. Cambridge University Press (2001)Google Scholar
  18. 18.
    Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings of the Royal Soc. London B Biol. Sci. 267, 109–119 (2000)CrossRefGoogle Scholar
  19. 19.
    Yang, Z.: Computational Molecular Evolution. Oxford University Press, UK (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory for Mathematical Statistical Experiments and, Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations