Advertisement

Adding Constraints – A (Seemingly Counterintuitive but) Useful Heuristic in Solving Difficult Problems

  • Olga KoshelevaEmail author
  • Martine Ceberio
  • Vladik Kreinovich
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 539)

Abstract

Intuitively, the more constraints we impose on a problem, the more difficult it is to solve it. However, in practice, difficult-to-solve problems sometimes get solved when we impose additional constraints and thus, make the problems seemingly more complex. In this methodological paper, we explain this seemingly counter-intuitive phenomenon, and we show that, dues to this explanation, additional constraints can serve as a useful heuristic in solving difficult problems.

Keywords

constraints algorithmic problems heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aberth, O.: Precise Numerical Analysis Using C++. Academic Press, New York (1998)Google Scholar
  2. 2.
    Beeson, M.J.: Foundations of Constructive Mathematics. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  4. 4.
    Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bridges, D.S.: Constructive Functional Analysis. Pitman, London (1979)zbMATHGoogle Scholar
  6. 6.
    Bridges, D.S., Via, S.L.: Techniques of Constructive Analysis. Springer, New York (2006)zbMATHGoogle Scholar
  7. 7.
    Busemann, H.: The Geometry of Geodesics. Dover Publ., New York (2005)zbMATHGoogle Scholar
  8. 8.
    Chandrasekhar, S.: Beauty and the quest for beauty in science. Physics Today 32(7), 25–30 (1979); reprinted in 62(12), 57–62 (2010) Google Scholar
  9. 9.
    Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Eindeutigkeitsbeweisen. Ph.D. Dissertation, Frankfurt am Main (1990) (in German)Google Scholar
  10. 10.
    Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Annals for Pure and Applied Logic 64(1), 27–94 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Kreinovich, V.: Uniqueness implies algorithmic computability. In: Proceedings of the 4th Student Mathematical Conference, pp. 19–21. Leningrad University, Leningrad (1975) (in Russian)Google Scholar
  13. 13.
    Kreinovich, V.: Reviewer’s remarks in a review of Bridges, D.S.: Constrictive functional analysis. Pitman, London (1979); Zentralblatt für Mathematik 401, 22–24 (1979) Google Scholar
  14. 14.
    Kreinovich, V.: Categories of space-time models. Ph.D. dissertation, Novosibirsk, Soviet Academy of Sciences, Siberian Branch. Institute of Mathematics (1979) (in Russian)Google Scholar
  15. 15.
    Kreinovich, V.: Physics-motivated ideas for extracting efficient bounds (and algorithms) from classical proofs: beyond local compactness, beyond uniqueness. In: Abstracts of the Conference on the Methods of Proof Theory in Mathematics, June 3-10, p. 8. Max-Planck Institut für Mathematik, Bonn (2007)Google Scholar
  16. 16.
    Kreinovich, V.: Any (true) statement can be generalized so that it becomes trivial: a simple formalization of D. K. Faddeev’s belief. Applied Mathematical Sciences 47, 2343–2347 (2009)MathSciNetGoogle Scholar
  17. 17.
    Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and feasibility of data processing and interval computations. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kushner, B.A.: Lectures on Constructive Mathematical Analysis. Amer. Math. Soc. Providence, Rhode Island (1984)Google Scholar
  19. 19.
    Lacombe, D.: Les ensembles récursivement ouvert ou fermés, et leurs applications à l’analyse récurslve. Compt. Rend. 245(13), 1040–1043 (1957)zbMATHGoogle Scholar
  20. 20.
    Lifschitz, V.A.: Investigation of constructive functions by the method of fillings. J. Soviet Math. 1, 41–47 (1973)CrossRefGoogle Scholar
  21. 21.
    Longpré, L., Kreinovich, V., Gasarch, W., Walster, G.W.: m Solutions Good, m − 1 Solutions Better. Applied Math. Sciences 2(5), 223–239 (2008)zbMATHGoogle Scholar
  22. 22.
    Pour-El, M., Richards, J.: Computability in Analysis and Physics. Springer, New York (1989)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olga Kosheleva
    • 1
    Email author
  • Martine Ceberio
    • 1
  • Vladik Kreinovich
    • 1
  1. 1.University of Texas at El PasoEl PasoUSA

Personalised recommendations