Advertisement

Optimization of Functionally Graded Materials Considering Dynamical Analysis

  • F. J. Ramírez-Gil
  • J. E. Murillo-Cardoso
  • E. C. N. Silva
  • W. Montealegre-RubioEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 49)

Abstract

Functionally graded materials (FGMs) are a new class of bio-inspired composite materials made from different material phases, in which their volume fraction changes gradually towards a particular direction. Accordingly, continuous changes in the composition, microstructure and porosity of the graded materials results in material properties gradients; for this reason, the material properties move smoothly and continuously from one surface to another, eliminating the interface problem. Hence, with appropriate design, FGMs can develop better properties than their homogeneous counterpart due to their better designability. One potential employment of FGMs is as damper or energy absorber in dynamic applications, in which optimization techniques such as the topology optimization method (TOM) can contribute to a better performance in relation to a non-optimized design. In this chapter, functionally graded structures are designed with and without the TOM in order to explore the advantages of the FGM concept in low-velocity impact condition, which is a special case in the world of dynamic analysis, and has interest for designing machinery parts and components.

Keywords

Structural optimization Topology optimization FGM Composite materials Low velocity impact Finite element modeling 

Notes

Acknowledgments

The first author acknowledges financial support from COLCIENCIAS by the scholarship “Becas de Colciencias, Doctorado en Colombia, 5672012”. The third author acknowledges the financial support of CNPq (National Council for Research and Development), under grants 304121/2013-4.

References

  1. 1.
    Zukas, J.A.: High Velocity Impact Dynamics. Wiley, New York (1990)Google Scholar
  2. 2.
    Goicolea, J.M.: Estructuras sometidas a impacto. In: Car, E., López, F., y Oller, S. (eds.) Estructuras sometidas a acciones dinámicas, pp. 535–567. Centro Internacional de Métodos Numéricos en Ingeniería (CIMNE), Barcelona (2000)Google Scholar
  3. 3.
    Rosenberg, Z., Dekel, E.: Terminal Ballistics. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    Anderson, C.E.: A review of computational ceramic armor modeling. In: Prokurat, L., Wereszczak, A., Lara-Curzio, E. (eds.) Advances in Ceramic Armor II: Ceramic Engineering and Science Proceedings, vol. 27, no. 7, pp. 1–18. Wiley, Hoboken, NJ, USA (2008)Google Scholar
  5. 5.
    McCauley, J.W., D’Andrea, G., Cho, K., Burkins, M.S., Dowding, R.J., Gooch, W.A.: Status Report on SPS TiB2/TiB/Ti Functionally Graded Materials (FGMs) for Armor, U.S. Army Research Laboratory (2006)Google Scholar
  6. 6.
    Koizumi, M.: FGM activities in Japan. Compos. B Eng. 28(1–2), 1–4 (1997)CrossRefGoogle Scholar
  7. 7.
    Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30(9), 2183–2193 (1995)CrossRefGoogle Scholar
  8. 8.
    Huang, J., Fadel, G.M., Blouin, V.Y., Grujicic, M.: Bi-objective optimization design of functionally gradient materials. Mater. Des. 23(7), 657–666 (2002)CrossRefGoogle Scholar
  9. 9.
    Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195 (2007)CrossRefGoogle Scholar
  10. 10.
    Obata, Y., Noda, N.: Optimum material design for functionally gradient material plate. Arch. Appl. Mech. 66(8), 581–589 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cardoso, E.L., Fonseca, J.S.O.: Complexity control in the topology optimization of continuum structures. J. Braz. Soc. Mech. Sci. Eng. 25(3), 293–301 (2003)CrossRefGoogle Scholar
  12. 12.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2003)Google Scholar
  13. 13.
    Eschenauer, H.A.: Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–389 (2001)CrossRefGoogle Scholar
  14. 14.
    Michell, A.G.M.: LVIII. The limits of economy of material in frame-structures. Philos. Mag. Ser. 6 8(47), 589–597 (1904)Google Scholar
  15. 15.
    Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sigmund, O.: Topology optimization: a tool for the tailoring of structures and materials. Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 358(1765), 211–227 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multi. Optim. 21(2), 120–127 (2001)CrossRefGoogle Scholar
  18. 18.
    Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)CrossRefGoogle Scholar
  19. 19.
    Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9), 635–654 (1999)zbMATHGoogle Scholar
  20. 20.
    Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multi. Optim. 37(3), 217–237 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dadalau, A., Hafla, A., Verl, A.: A new adaptive penalization scheme for topology optimization. Prod. Eng. Res. Devel. 3(4–5), 427–434 (2009)CrossRefGoogle Scholar
  22. 22.
    Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multi. Optim. 16(1), 68–75 (1998)CrossRefGoogle Scholar
  23. 23.
    Hassani, B., Hinton, E.: A review of homogenization and topology optimization III—topology optimization using optimality criteria. Comput. Struct. 69(6), 739–756 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Tovar, A., Patel, N.M., Niebur, G.L., Sen, M., Renaud, J.E.: Topology optimization using a hybrid cellular automaton method with local control rules. J. Mech. Des. 128(6), 1205–1216 (2006)CrossRefGoogle Scholar
  25. 25.
    Lamberti, L., Pappalettere, C.: Move limits definition in structural optimization with sequential linear programming. Part I: optimization algorithm. Comput. Struct. 81(4), 197–213 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, X., Zhang, H.: Optimal design of functionally graded foam material under impact loading. Int. J. Mech. Sci. 68, 199–211 (2013)Google Scholar
  27. 27.
    Paulino, G.H., Silva, E.C.N.: Design of functionally graded structures using topology optimization. Mater. Sci. Forum 492, 435–440 (2005)CrossRefGoogle Scholar
  28. 28.
    Kim, J.-H., Paulino, G.H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J. Appl. Mech. 69(4), 502–514 (2002)CrossRefzbMATHGoogle Scholar
  29. 29.
    Matsui, K., Terada, K.: Continuous approximation of material distribution for topology optimization. Int. J. Numer. Meth. Eng. 59(14), 1925–1944 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vatanabe, S.L., Rubio, W.M., Silva, E.C.N.: Modeling of functionally graded materials. In: Comprehensive Materials Processing, pp. 261–282. Elsevier (2014)Google Scholar
  31. 31.
    Cook, R.D., Plesha, M.E., Malkus, D.S., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002)Google Scholar
  32. 32.
    Patel, N.M., Tovar, A., Kang, B.-S., Renaud, J.E.: Crashworthiness design using topology optimization. J. Mech. Des. 131(6), 061013 (2009)CrossRefGoogle Scholar
  33. 33.
    Xie, Y.M., Steven, G.P.: Evolutionary Structural Optimization. Springer, London (1997)CrossRefzbMATHGoogle Scholar
  34. 34.
    Tovar, A., Patel, N.M., Kaushik, A.K., Renaud, J.E.: Optimality conditions of the hybrid cellular automata for structural optimization. AIAA J. 45(3), 673–683 (2007)CrossRefGoogle Scholar
  35. 35.
    Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater Sci. 46(3–4), 309–327 (2001)CrossRefGoogle Scholar
  36. 36.
    Choi, W.S., Park, G.J.: Transformation of dynamic loads into equivalent static loads based on modal analysis. Int. J. Numer. Meth. Eng. 46(1), 29–43 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kang, B.S., Choi, W.S., Park, G.J.: Structural optimization under equivalent static loads transformed from dynamic loads based on displacement. Comput. Struct. 79(2), 145–154 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • F. J. Ramírez-Gil
    • 1
  • J. E. Murillo-Cardoso
    • 1
  • E. C. N. Silva
    • 2
  • W. Montealegre-Rubio
    • 1
    Email author
  1. 1.Faculty of Mines, Department of Mechanical EngineeringUniversidad Nacional de ColombiaMedellínColombia
  2. 2.Department of Mechatronics and Mechanical Systems EngineeringEscola Politécnica of the University of São PauloButantãBrazil

Personalised recommendations