Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 49))

  • 1064 Accesses

Abstract

This chapter presents an overview of recent works aimed at characterizing the mechanical behaviour of the human aorta via experiments, modeling and simulation. The application of these techniques are in particular detailed in the analysis of the following cases: ascending aorta, aortic arch and thoracic descending aorta under in-vitro and in-vivo conditions. The experimental procedure encompasses uniaxial tension and pressurization tests on healthy and pathological tissues of different ages. The tensile measurements are used to calibrate the material parameters of isotropic or anisotropic quasi-static elastic constitutive models which are intended to predict the material response in a wide deformation range. Although this task is usually carried out analytically, numerical simulations (using a discretized formulation defined in the context of the finite element method) are also performed for problems in which more complex geometry, boundary conditions and loads are considered. Overall, the reported material characterization was found to provide a realistic description of the mechanical behaviour of the aorta subjected to various deformation and stress scenarios. Finally, the implication of these studies is the possibility to predict the mechanical response of the human aorta under generalized loading states like those that can occur in physiological conditions and/or in medical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Okaili, R., Schwartz, E.D.: Bilateral aortic origins of the vertebral arteries with right vertebral artery arising distal to left subclavian artery: case report. Surg. Neurol. 67, 174–176 (2007)

    Article  Google Scholar 

  2. Al Shammari, M., Taylor, P., Reidy, J.F.: Use of through-and-through guidewire for delivering large stent-grafts into the distal aortic arch. Cardiovasc. Intervent. Radiol. 23, 237–238 (2000)

    Article  Google Scholar 

  3. Atienza, J.M., Guinea, G.V., Rojo, F.J., Burgos, R.J., García-Montero, C., Goicolea, F.J., Argoncillo, P., Elices, M.: The influence of pressure and temperature on the behavior of the human aorta and carotid arteries. Revista Española de Cardiología 60, 259–267 (2007)

    Article  Google Scholar 

  4. Bednarkiewicz, M., Khatchatourian, G., Christenson, J.T., Faidutti, B.: Aortic arch replacement using a four-branched aortic arch graft. Eur. J. Cardiothorac. Surg. 21, 89–91 (2002)

    Article  Google Scholar 

  5. Beller, C.J., Labrosse, M.R., Thubrikar, M.J., Robicsek, F.: Role of aortic root motion in the pathogenesis of aortic dissection. Circulation 109, 763–769 (2004)

    Article  Google Scholar 

  6. Beller, C.J., Labrosse, M.R., Thubrikar, M.J., Szabo, G., Robicsek, F., Hagl, S.: Increased aortic wall stress in aortic insufficiency: clinical data and computer model. Eur. J. Cardiothorac. Surg. 27, 270–275 (2005)

    Article  Google Scholar 

  7. Bizzarri, F., Mattia, C., Di Nardo, M., Di Marzio, E., Ricci, M., Coluzzi, F., Frati, G., Pagliaro, P., Muzzi, L., Petrozza, V.: Antegrade selective cerebral perfusion in patients with “bovine aortic arch”: is it easier? J. Cardiothorac. Surg. 3, 60 (2008a)

    Article  Google Scholar 

  8. Bizzarri, F., Mattia, C., Ricci, M., Chirichilli, I., Santo, C., Rose, D., Muzzi, L., Pugliese, G., Frati, G., Sartini, P., Ferrari, R., Della Rocca, C., Laghi, A.: Traumatic aortic arch false aneurysm after blunt chest trauma in a motocross rider. J. Cardiothorac. Surg. 3, 23 (2008b)

    Article  Google Scholar 

  9. Bonow, R.O., Carabello, B.A., Chatterjee, K., de Leon Jr, A.C., Faxon, D.P., Freed, M.D., Gaasch, W.H., Lytle, B.W., Nishimura, R.A., O’Gara, P.T., O’Rourke, R.A., Otto, C.M., Shah, P.M., Shanewise, J.S., Smith Jr., S.C., Jacobs, A.K., Adams, C.D., Anderson, J.L., Antman, E.M., Faxon, D.P., Fuster, V., Halperin, J.L., Hiratzka, L.F., Hunt, S.A., Lytle, B.W., Nishimura, R., Page, R.L., Riegel, B.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the society of cardiovascular anesthesiologists endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. J. Am. Coll. Cardiol. 48(3), e1–e148 (2006)

    Article  Google Scholar 

  10. Boudoulas, H., Toutouzas, P., Wooley, C.: Functional Abnormalities of the Aorta. Futura, Armonk, New York (1996)

    Google Scholar 

  11. Braverman, A., Thomson, R., Sanchez, L.: Braunwald’s Heart Disease (Chapter 60: Diseases of the aorta), 9th edn. Elsevier, Philadelphia (2010)

    Google Scholar 

  12. Caceres, M., Estrera, A.L., Buja, L.M., Safi, H.J.: Transverse aortic arch replacement associated with MAGIC syndrome: case report and literature review. Ann. Vasc. Surg. 20, 395–398 (2006)

    Article  Google Scholar 

  13. Cacho, F.: Constitutive models for soft biological tissues. Ph.D. thesis, Universidad de Zaragoza (2006) (in Spanish)

    Google Scholar 

  14. Celentano, D.: A large strain thermoviscoplastic formulation for the solidification of S.G. cast iron in a green sand mould. Int. J. Plast. 17, 1623–1658 (2001)

    Article  MATH  Google Scholar 

  15. Chiesa, R., Moura, M., Lucci, C., Castellano, R., Civilini, E., Melissano, G., Tshomba, Y.: Blunt trauma to the thoracic aorta: mechanisms involved, diagnosis and management. J. Vasc. Brasileiro 2(3), 197–209 (2003)

    Google Scholar 

  16. Chuong, C.J., Fung, Y.C.: On residual stresses in arteries. ASME J. Biomech. Eng. 108, 189–192 (1986)

    Article  Google Scholar 

  17. Coady, M.A., Rizzo, J.A., Goldstein, L.J., Elefteriades, J.A.: Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol. Clin. 17(4), 615–635 (1999)

    Article  Google Scholar 

  18. Criscione, J.C.: Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J. Elast. 70, 129–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Criscione, J.C.: A constitutive framework for tubular structures that enables a semi-inverse solution to extension and inflation. J. Elast. 77, 57–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dambrin, C., Marcheix, B., Hollington, L., Rousseau, H.: Surgical treatment of an aortic arch aneurysm without cardio-pulmonary bypass: endovascular stent-grafting after extra-anatomic bypass of supra-aortic vessels. Eur. J. Cardiothorac. Surg. 27, 159–161 (2005)

    Article  Google Scholar 

  21. Darling, R.C., Messina, C.R., Brewster, D.C., Ottinger, L.W.: Autopsy study of unoperated abdominal aortic-aneurysms—case for early resection. Circulation 56(3), 161–164 (1977)

    Google Scholar 

  22. Davies, R.R., Goldstein, L.J., Coady, M.A., Tittle, S.L., Rizzo, J.A., Kopf, G.S., Elefteriades, J.A.: Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg. 73(1), 17–28 (2002)

    Article  Google Scholar 

  23. Davies, R.R., Gallo, A., Coady, M.A., Tellides, G., Botta, D.M., Burke, B., Coe, M.P., Kopf, G.S., Elefteriades, J.A.: Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg. 81(1), 169–177 (2006)

    Article  Google Scholar 

  24. De Caro, E., Trocchio, G., Smeraldi, A., Calevo, M.G., Pongiglione, G.: Aortic arch geometry and exercise-induced hypertension in aortic coarctation. Am. J. Cardiol. 99, 1284–1287 (2007)

    Article  Google Scholar 

  25. Delfino, A., Stergiopulos, N., Moore, J., Meister, J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30, 777–786 (1997)

    Article  Google Scholar 

  26. Demiray, H.: On the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972)

    Article  Google Scholar 

  27. Di Martino, E.S., Vorp, D.A.: Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31, 804–809 (2003)

    Article  Google Scholar 

  28. Doyle, B.J., Cloonan, A.J., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43, 1406–1408 (2010)

    Article  Google Scholar 

  29. Doyle, B.J., Killion, J., Callanan, A.: Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models. J. Biomech. 45, 1759–1768 (2012)

    Article  Google Scholar 

  30. Erbel, R., Eggebrecht, H.: Dimensions and the risk of dissection. Heart 92(1), 137–142 (2006)

    Article  Google Scholar 

  31. Ergin, M.A., Spielvogel, D., Apaydin, A., Lansman, S.L., McCullough, J.N., Galla, J.D., Griepp, R.D.: Surgical treatment of the dilated ascending aorta: when and how? Ann. Thorac. Surg. 67, 1834–1839 (1999)

    Article  Google Scholar 

  32. Fedak, P.W.M., Verma, S., David, T.E., Leask, R.L., Weisel, R.D., Butany, J.: Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8), 900–904 (2002)

    Article  Google Scholar 

  33. Field, M., Richens, D.: Anticipatory valsalva-type response as a contributory factor in low impact blunt traumatic aortic rupture. Med. Hypotheses 67, 87–92 (2006)

    Article  Google Scholar 

  34. Field, M., Sastry, P., Zhao, A., Richens, D.: Small vessel avulsion and acute aortic syndrome: a putative aetiology for initiation and propagation of blunt traumatic aortic injury at the isthmus. Med. Hypotheses 68, 1392–1398 (2007)

    Article  Google Scholar 

  35. Forman, J., Stacey, S., Evans, J., Kent, R.: Posterior acceleration as a mechanism of blunt traumatic injury of the aorta. J. Biomech. 41, 1359–1364 (2008)

    Article  Google Scholar 

  36. Fung, Y.: Biomechanics. Mechanical Properties of Living Tissues. Springer (1993)

    Google Scholar 

  37. Gao, F., Watanabe, M., Matusuzawa, T.: Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed. Eng. OnLine 5, 25 (2006)

    Article  Google Scholar 

  38. García-Herrera, C.M.: Mechanical behaviour of the human ascending aorta: characterization and numerical simulation. Ph.D. thesis, Universidad Politécnica de Madrid (2008) (in Spanish)

    Google Scholar 

  39. García-Herrera, C.M., Celentano, D.J., Cruchaga, M.A., Rojo, F.J., Atienza, J.M., Guinea, G.V., Goicolea, J.M.: Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Comput. Methods Biomech. Biomed. Eng. 15, 185–193 (2012a)

    Article  Google Scholar 

  40. García-Herrera, C.M., Celentano, D.J., Cruchaga, M.A.: Bending and pressurisation test of the human aoritc arch: experiments, modelling and simulation of a patient-specific case. Comput. Methods Biomech. Biomed. Eng. (2012b) (in press)

    Google Scholar 

  41. Gasser, C.T., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  42. Goicolea, J., Atienza, J.M., Burgos, R., García-Touchard, A., Goicolea, J., Guinea, G., Mingo, S., Montero, C., Salas, C.: Biomecánica aórtica y su correlación in vivo, estudio del comportamiento mecánico y de la rotura de aorta y su correlación ecocardiográfica, histológica y molecular. Hospital Universitario Puerta de Hierro, Protocolo de extracción de muestras (2006)

    Google Scholar 

  43. Govindjee, S., Mihalic, P.A.: Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136, 47–57 (1996)

    Article  MATH  Google Scholar 

  44. Groenink, M., Langerak, S.E., Vanbavel, E., van der Wall, E.E., Mulder, B.J.M., van der Wal, A.C., Spaan, J.A.E.: The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc. Res. 43(2), 471–480 (1999)

    Article  Google Scholar 

  45. Grotenhuis, H.B., Ottenkamp, J., Westenberg, J.J.M., Bax, J.J., Kroft, L.J.M., Roos, A.: Reduced aortic elasticity and dilatation are associated with aortic regurgitation and left ventricular hyperthrophy in nonstenotic bicuspid aortic valve patients. J. Am. Coll. Cardiol. 49, 1660–1665 (2007)

    Article  Google Scholar 

  46. Guinea, G.V., Atienza, J.M., Elices, M., Argoncillo, P., Hayashi, K.: Thermomechanical beahavior of human carotid arteries in the pasive state. AJP—Heart Circ. Physiol. 288, 2940–2945 (2005)

    Article  Google Scholar 

  47. Guntheroth, W.G.: A critical review of the American College of Cardiology/American Heart Association practice guidelines on bicuspid aortic valve with dilated ascending aorta. Am. J. Cardiol. 102(1), 107–110 (2008)

    Article  Google Scholar 

  48. Hager, A., Kaemmerer, H., Rapp-Bernhardt, U., Blucher, S., Rapp, K., Bernhardt, T.M., Galanski, M., Hess, J.: Diameters of the thoracic aorta throughout life as measured with helical computed tomography. J. Thorac. Cardiovasc. Surg. 123(6), 1060–1066 (2002)

    Article  Google Scholar 

  49. Hall, A.J., Busse, E.F.G., McCarville, D.J., Burgess, J.J.: Aortic wall tension as a predictive factor for abdominal aortic aneurysm rupture: improving the selection of patients for abdominal aortic aneurysm repair. Ann. Vasc. Surg. 14(2), 152–157 (2000)

    Article  Google Scholar 

  50. Hariton, I., deBotton, G., Gasser, T.C., Holzapfel, G.A.: Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J. Theor. Biol. 248, 460–470 (2007)

    Article  MathSciNet  Google Scholar 

  51. Holzapfel, G.: Non Linear Solid Mechanics. Wiley, Chichester (2000)

    Google Scholar 

  52. Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289, H2048–H2058 (2005)

    Article  Google Scholar 

  53. Holzapfel, G.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238, 290–302 (2006)

    Article  MathSciNet  Google Scholar 

  54. Holzapfel, G.A., Sommer, G., Auer, M., Regitnig, P., Ogden, R.W.: Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35, 530–545 (2007)

    Article  Google Scholar 

  55. Humphrey, J.: Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)

    Google Scholar 

  56. Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues and Organs. Springer (2001)

    Google Scholar 

  57. Iliopoulos, D.C., Kritharis, E.P., Giagini, A.T., Papadodima, S.A., Sokolis, D.P.: Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects. J. Thorac. Cardiovasc. Surg. 137(1), 101–109 (2009)

    Article  Google Scholar 

  58. Kleinstreuer, C., Li, Z., Basciano, C., Seelecke, S., Farber, M.: Computational mechanics of nitinol stent grafts. J. Biomech. 41, 2370–2378 (2008)

    Article  Google Scholar 

  59. Kocis, K.C., Midgley, F.M., Ruckman, R.N.: Aortic arch complex anomalies: 20-year experience with symptoms, diagnosis, associated cardiac deffects, and surgical repair. Pediatr. Cardiol. 18, 127–132 (1997)

    Article  Google Scholar 

  60. Koullias, G., Modak, R., Tranquilli, M.: Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J. Thorac. Cardiovasc. Surg. 130, 677.e1–677.e9 (2005)

    Google Scholar 

  61. Kroon, M., Holzapfel, G.A.: Elastic properties of anisotropic vascular membranes examined by inverse analysis. Comput. Methods Appl. Mech. Eng. 198(45–46), 3622–3632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Laurent, S., Cockcroft, J., Bortel, L.V., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., Struijker-Boudier, H.: Expert consensus document on arterial stiffness: methodological issued and clinical applications. Eur. Heart J. 27, 2588–2605 (2006)

    Article  Google Scholar 

  63. Li, Z., Kleinstreuer, C.: A new wall stress equation for aneurysm-rupture prediction. Ann. Biomed. Eng. 33, 209–213 (2005)

    Article  Google Scholar 

  64. Liu, C.Y., Chen, D., Teixido-Tura, G., Chugh, A.R., Redheuil, A., Gomes, A.S., Prince, M.R., Hundley, W., Bluemke, D.A., Lima, J.A.: Aortic size, distensibility, and pulse wave velocity changes with aging: longitudinal analysis from Multi-Ethnic Study of Atherosclerosis (MESA). J. Cardiovasc. Magn. Reson. 14, 126–127 (2012)

    Article  Google Scholar 

  65. Lonescu, I., Guilkey, J.E., Berzins, M., Kirby, R.M., Weiss, J.A.: Simulation of soft tissue failure using the material point method. J. Biomech. Eng. 128, 917–924 (2006)

    Article  Google Scholar 

  66. Lu, J., Zhou, X., Raghavan, M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demostration using abdominal aortic aneurysms. J. Biomech. 40, 693–696 (2007)

    Article  Google Scholar 

  67. Marquardt, D.: An algorithm for least squares. SIAM J. Appl. Math 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  68. Martino, E.S.D., Bohra, A., Geest, J.P.V., Gupta, N., Makaroum, M.S., Vorp, D.A.: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43(3), 570–576 (2006)

    Article  Google Scholar 

  69. Masson, I., Boutouyrie, P., Laurent, S., Humphrey, J.D., Zidi, M.: Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 41(12), 2618–2627 (2008)

    Article  Google Scholar 

  70. McGillicuddy, D., Rosen, P.: Diagnostic dilemmas and current controversies in blunt chest trauma. Emerg. Med. Clin. North Am. 25, 695–711 (2007)

    Article  Google Scholar 

  71. Medina, F., Wicker, R.B.: Geometric modeling of the human aorta for rapid prototyping using patient data and commercial software packages. In: Summer Bioengineering Conference, Florida, USA (2003)

    Google Scholar 

  72. Mohan, D., Melvin, J.: Failure properties of passive human aortic tissue. I uniaxial tension test. J. Biomech. 15(11), 887–902 (1982)

    Article  Google Scholar 

  73. Momma, K., Matsuoka, R., Takao, A.: Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr. Cardiol. 20, 97–102 (1999)

    Article  Google Scholar 

  74. Nichols, W., Rourke, M.O.: McDonald’s Flow in Arteries Theoretical, Experimental and Clinical Principles, 3rd edn. Oxford University, New York (1990)

    Google Scholar 

  75. Nollen, G.J., Groenink, M., Tijssen, J.G.P., van de Wall, E.E., Mulder, B.J.M.: Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan sydrome. Eur. Heart J. 25, 1146–1152 (2004)

    Article  Google Scholar 

  76. Ogden, R.W.: Non-linear Elastic Deformations. Dover Publications Inc., New York (1984)

    MATH  Google Scholar 

  77. Ogden, R.: Nonlinear Elasticity with Application to Material Modelling. Polish Academy of Sciences (2003)

    Google Scholar 

  78. Oijen, C.V.: Mechanics and design of fiber-reinforced vascular prostheses. Ph.D. thesis, Technische Universiteit Eindhoiven (2003)

    Google Scholar 

  79. Okamoto, R.J., Wagenseil, J.E., DeLong, W.R., Peterson, S.J., Kouchoukos, N.T., Sundt III, T.M.: Mechanical properties of dilated human ascending aorta. Ann. Biomed. Eng. 30, 624–635 (2002)

    Article  Google Scholar 

  80. Pape, L.A., Tsai, T.T., Isselbacher, E.M., Oh, J.K., O’Gara, P.T., Evangelista, A., Fattori, R., Meinhardt, G., Trimarchi, S., Bossone, E., Suzuki, T., Cooper, J.V., Froehlich, J.B., Nienaber, C.A., Eagle, K.A.: Aortic diameter > 5.5 cm is not a good predictor of type A aortic dissection. Observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation 1120–1127 (2007)

    Google Scholar 

  81. Pasic, M., Ewert, R., Engel, M., Franz, N., Bergs, P., Kuppe, H., Hetzer, R.: Aortic rupture and concomitant transection of the left bronchus after blunt chest trauma. Chest 117, 1508–1510 (2000)

    Article  Google Scholar 

  82. Prendergast, P.J., Lally, C., Daly, S., Reid, A.J., Lee, T.C., Quinn, D., Dolan, F.: Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125, 692–699 (2003)

    Article  Google Scholar 

  83. Putz, R., Pabst, R., Weiglein A.: Sobotta Atlas of Human Anatomic Atlas, vol. 2. Lippincott Williams & Wilkins (2001)

    Google Scholar 

  84. Raghavan, M.L., Webster, M., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm assessment using a new mathematical model. Ann. Biomed. Eng. 24(5), 573–582 (1996)

    Article  Google Scholar 

  85. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4), 475–482 (2000)

    Article  Google Scholar 

  86. Raghavan, M.L., Kratzberg, J., de Tolosa, E.M.C., Hanaoka, M.M., Walker, P., da Silva, E.S.: Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39, 3010–3016 (2006)

    Article  Google Scholar 

  87. Richens, D., Field, M., Neale, M., Oakley, C.: The mechanism of injury in blunt traumatic rupture of the aorta. Eur. J. Cardiothorac. Surg. 21, 288–293 (2002)

    Article  Google Scholar 

  88. Richens, D., Field, M., Hashim, S., Neale, M., Oakley, C.: A finite element model of blunt traumatic aortic rupture. Eur. J. Cardiothorac. Surg. 25, 1039–1047 (2004)

    Article  Google Scholar 

  89. Rizzo, J.A., Coady, M.A., Elefteriades, J.A.: Interpreting data on thoracic aortic aneurysms. Statistical issues. Cardiol Clin. 17(4), 797–805 (1999)

    Article  Google Scholar 

  90. Roach, M.R., Burton, A.C.: The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35, 681–690 (1957)

    Article  Google Scholar 

  91. Rodríguez, J., Goicolea, J.M., Gabaldón, F.: A volumetric model for growth of arterial walls with arbitrary geometry and loads. J. Biomech. 40, 961–971 (2007)

    Article  Google Scholar 

  92. Rose, J.L., Lalande, A., Bouchot, O., Bourennane, E.B., Walker, P.M., Ugolini, P., Revol-Muller, C., Cartier, R., Brunotte, F.: Magn. Reson. Imag. 28, 255–263 (2010)

    Google Scholar 

  93. Roy, C.S.: The elastic properties of the arterial wall. J. Physiol. 3, 125–162 (1880)

    Article  Google Scholar 

  94. Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000)

    Article  MATH  Google Scholar 

  95. Sanmartín, M., Goicolea, J., García, C., García, J., Crespo, A., Rodríguez, J., Goicolea, J.M.: Influencia de la tensión de cizallamiento en la reestenosis intra-stent: Estudio in vivo con reconstrucción 3D y dinámica de fluidos computacional. Revista Española de Cardiología 59(1), 20–27 (2006)

    Article  Google Scholar 

  96. Schulze-Bauer, C., Holzapfel, G.: Determination of constitutive equations for human arteries from clinical data. J. Biomech. 36, 165–169 (2003)

    Article  Google Scholar 

  97. Spencer, A.: Continuum theory of the mechanics of fibre-reinforced composites. CISM 282, 1–32 (1984)

    Google Scholar 

  98. Tochii, M., Ando, M., Takagi, Y., Yamashita, M., Hoshino, R., Akita, K.: Total arch replacement for a distal arch aneurysm with aberrant right subclavian artery. Gen. Thorac. Cardiovasc. Sur. 56, 22–24 (2008)

    Article  Google Scholar 

  99. Vande Geest, J.P., Di Martino, E.S., Vorp, D.A.: An analysis of the complete strain field within Flexcercell\(^{\text{ TM }}\) membranes. J. Biomech. 37, 1923–1928 (2004)

    Article  Google Scholar 

  100. Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)

    Article  Google Scholar 

  101. Vorp, D.A., Schiro, B.J., Ehrlich, M.P., Juvonen, T.S., Ergin, M.A., Griffith, B.P.: Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4), 1210–1214 (2003)

    Article  Google Scholar 

  102. Vorp, D.A., Vande Geest, J.P.: Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25(8), 1558–1566 (2005)

    Article  Google Scholar 

  103. Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902 (2007)

    Article  Google Scholar 

  104. Wolinsky, H., Glagov, S.: Structural basis for the static mechanical properties of the aortic media. Circul. Res. 14, 400–413 (1964)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to Dr. R. Burgos and C. García-Montero of the Hospital de Puerta de Hierro at Madrid for the provision of arterial tissues analyzed in this work. The support provided by DICYT Project No. 051415GH of the Universidad de Santiago de Chile (USACH) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio M. García-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

García-Herrera, C.M., Celentano, D.J., Cruchaga, M.A., Guinea, G.V. (2016). Mechanical Characterization of the Human Aorta: Experiments, Modeling and Simulation. In: Muñoz-Rojas, P. (eds) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-04265-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04265-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04264-0

  • Online ISBN: 978-3-319-04265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics