Advertisement

Mechanical Characterization of the Human Aorta: Experiments, Modeling and Simulation

  • Claudio M. García-HerreraEmail author
  • Diego J. Celentano
  • Marcela A. Cruchaga
  • Gustavo V. Guinea
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 49)

Abstract

This chapter presents an overview of recent works aimed at characterizing the mechanical behaviour of the human aorta via experiments, modeling and simulation. The application of these techniques are in particular detailed in the analysis of the following cases: ascending aorta, aortic arch and thoracic descending aorta under in-vitro and in-vivo conditions. The experimental procedure encompasses uniaxial tension and pressurization tests on healthy and pathological tissues of different ages. The tensile measurements are used to calibrate the material parameters of isotropic or anisotropic quasi-static elastic constitutive models which are intended to predict the material response in a wide deformation range. Although this task is usually carried out analytically, numerical simulations (using a discretized formulation defined in the context of the finite element method) are also performed for problems in which more complex geometry, boundary conditions and loads are considered. Overall, the reported material characterization was found to provide a realistic description of the mechanical behaviour of the aorta subjected to various deformation and stress scenarios. Finally, the implication of these studies is the possibility to predict the mechanical response of the human aorta under generalized loading states like those that can occur in physiological conditions and/or in medical device applications.

Keywords

Aortic Arch Aortic Wall Bicuspid Aortic Valve Maximum Principal Stress Circumferential Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to express their appreciation to Dr. R. Burgos and C. García-Montero of the Hospital de Puerta de Hierro at Madrid for the provision of arterial tissues analyzed in this work. The support provided by DICYT Project No. 051415GH of the Universidad de Santiago de Chile (USACH) is gratefully acknowledged.

References

  1. 1.
    Al-Okaili, R., Schwartz, E.D.: Bilateral aortic origins of the vertebral arteries with right vertebral artery arising distal to left subclavian artery: case report. Surg. Neurol. 67, 174–176 (2007)CrossRefGoogle Scholar
  2. 2.
    Al Shammari, M., Taylor, P., Reidy, J.F.: Use of through-and-through guidewire for delivering large stent-grafts into the distal aortic arch. Cardiovasc. Intervent. Radiol. 23, 237–238 (2000)CrossRefGoogle Scholar
  3. 3.
    Atienza, J.M., Guinea, G.V., Rojo, F.J., Burgos, R.J., García-Montero, C., Goicolea, F.J., Argoncillo, P., Elices, M.: The influence of pressure and temperature on the behavior of the human aorta and carotid arteries. Revista Española de Cardiología 60, 259–267 (2007)CrossRefGoogle Scholar
  4. 4.
    Bednarkiewicz, M., Khatchatourian, G., Christenson, J.T., Faidutti, B.: Aortic arch replacement using a four-branched aortic arch graft. Eur. J. Cardiothorac. Surg. 21, 89–91 (2002)CrossRefGoogle Scholar
  5. 5.
    Beller, C.J., Labrosse, M.R., Thubrikar, M.J., Robicsek, F.: Role of aortic root motion in the pathogenesis of aortic dissection. Circulation 109, 763–769 (2004)CrossRefGoogle Scholar
  6. 6.
    Beller, C.J., Labrosse, M.R., Thubrikar, M.J., Szabo, G., Robicsek, F., Hagl, S.: Increased aortic wall stress in aortic insufficiency: clinical data and computer model. Eur. J. Cardiothorac. Surg. 27, 270–275 (2005)CrossRefGoogle Scholar
  7. 7.
    Bizzarri, F., Mattia, C., Di Nardo, M., Di Marzio, E., Ricci, M., Coluzzi, F., Frati, G., Pagliaro, P., Muzzi, L., Petrozza, V.: Antegrade selective cerebral perfusion in patients with “bovine aortic arch”: is it easier? J. Cardiothorac. Surg. 3, 60 (2008a)CrossRefGoogle Scholar
  8. 8.
    Bizzarri, F., Mattia, C., Ricci, M., Chirichilli, I., Santo, C., Rose, D., Muzzi, L., Pugliese, G., Frati, G., Sartini, P., Ferrari, R., Della Rocca, C., Laghi, A.: Traumatic aortic arch false aneurysm after blunt chest trauma in a motocross rider. J. Cardiothorac. Surg. 3, 23 (2008b)CrossRefGoogle Scholar
  9. 9.
    Bonow, R.O., Carabello, B.A., Chatterjee, K., de Leon Jr, A.C., Faxon, D.P., Freed, M.D., Gaasch, W.H., Lytle, B.W., Nishimura, R.A., O’Gara, P.T., O’Rourke, R.A., Otto, C.M., Shah, P.M., Shanewise, J.S., Smith Jr., S.C., Jacobs, A.K., Adams, C.D., Anderson, J.L., Antman, E.M., Faxon, D.P., Fuster, V., Halperin, J.L., Hiratzka, L.F., Hunt, S.A., Lytle, B.W., Nishimura, R., Page, R.L., Riegel, B.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the society of cardiovascular anesthesiologists endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. J. Am. Coll. Cardiol. 48(3), e1–e148 (2006)CrossRefGoogle Scholar
  10. 10.
    Boudoulas, H., Toutouzas, P., Wooley, C.: Functional Abnormalities of the Aorta. Futura, Armonk, New York (1996)Google Scholar
  11. 11.
    Braverman, A., Thomson, R., Sanchez, L.: Braunwald’s Heart Disease (Chapter 60: Diseases of the aorta), 9th edn. Elsevier, Philadelphia (2010)Google Scholar
  12. 12.
    Caceres, M., Estrera, A.L., Buja, L.M., Safi, H.J.: Transverse aortic arch replacement associated with MAGIC syndrome: case report and literature review. Ann. Vasc. Surg. 20, 395–398 (2006)CrossRefGoogle Scholar
  13. 13.
    Cacho, F.: Constitutive models for soft biological tissues. Ph.D. thesis, Universidad de Zaragoza (2006) (in Spanish)Google Scholar
  14. 14.
    Celentano, D.: A large strain thermoviscoplastic formulation for the solidification of S.G. cast iron in a green sand mould. Int. J. Plast. 17, 1623–1658 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Chiesa, R., Moura, M., Lucci, C., Castellano, R., Civilini, E., Melissano, G., Tshomba, Y.: Blunt trauma to the thoracic aorta: mechanisms involved, diagnosis and management. J. Vasc. Brasileiro 2(3), 197–209 (2003)Google Scholar
  16. 16.
    Chuong, C.J., Fung, Y.C.: On residual stresses in arteries. ASME J. Biomech. Eng. 108, 189–192 (1986)CrossRefGoogle Scholar
  17. 17.
    Coady, M.A., Rizzo, J.A., Goldstein, L.J., Elefteriades, J.A.: Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol. Clin. 17(4), 615–635 (1999)CrossRefGoogle Scholar
  18. 18.
    Criscione, J.C.: Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J. Elast. 70, 129–147 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Criscione, J.C.: A constitutive framework for tubular structures that enables a semi-inverse solution to extension and inflation. J. Elast. 77, 57–81 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dambrin, C., Marcheix, B., Hollington, L., Rousseau, H.: Surgical treatment of an aortic arch aneurysm without cardio-pulmonary bypass: endovascular stent-grafting after extra-anatomic bypass of supra-aortic vessels. Eur. J. Cardiothorac. Surg. 27, 159–161 (2005)CrossRefGoogle Scholar
  21. 21.
    Darling, R.C., Messina, C.R., Brewster, D.C., Ottinger, L.W.: Autopsy study of unoperated abdominal aortic-aneurysms—case for early resection. Circulation 56(3), 161–164 (1977)Google Scholar
  22. 22.
    Davies, R.R., Goldstein, L.J., Coady, M.A., Tittle, S.L., Rizzo, J.A., Kopf, G.S., Elefteriades, J.A.: Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg. 73(1), 17–28 (2002)CrossRefGoogle Scholar
  23. 23.
    Davies, R.R., Gallo, A., Coady, M.A., Tellides, G., Botta, D.M., Burke, B., Coe, M.P., Kopf, G.S., Elefteriades, J.A.: Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg. 81(1), 169–177 (2006)CrossRefGoogle Scholar
  24. 24.
    De Caro, E., Trocchio, G., Smeraldi, A., Calevo, M.G., Pongiglione, G.: Aortic arch geometry and exercise-induced hypertension in aortic coarctation. Am. J. Cardiol. 99, 1284–1287 (2007)CrossRefGoogle Scholar
  25. 25.
    Delfino, A., Stergiopulos, N., Moore, J., Meister, J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30, 777–786 (1997)CrossRefGoogle Scholar
  26. 26.
    Demiray, H.: On the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972)CrossRefGoogle Scholar
  27. 27.
    Di Martino, E.S., Vorp, D.A.: Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31, 804–809 (2003)CrossRefGoogle Scholar
  28. 28.
    Doyle, B.J., Cloonan, A.J., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43, 1406–1408 (2010)CrossRefGoogle Scholar
  29. 29.
    Doyle, B.J., Killion, J., Callanan, A.: Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models. J. Biomech. 45, 1759–1768 (2012)CrossRefGoogle Scholar
  30. 30.
    Erbel, R., Eggebrecht, H.: Dimensions and the risk of dissection. Heart 92(1), 137–142 (2006)CrossRefGoogle Scholar
  31. 31.
    Ergin, M.A., Spielvogel, D., Apaydin, A., Lansman, S.L., McCullough, J.N., Galla, J.D., Griepp, R.D.: Surgical treatment of the dilated ascending aorta: when and how? Ann. Thorac. Surg. 67, 1834–1839 (1999)CrossRefGoogle Scholar
  32. 32.
    Fedak, P.W.M., Verma, S., David, T.E., Leask, R.L., Weisel, R.D., Butany, J.: Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8), 900–904 (2002)CrossRefGoogle Scholar
  33. 33.
    Field, M., Richens, D.: Anticipatory valsalva-type response as a contributory factor in low impact blunt traumatic aortic rupture. Med. Hypotheses 67, 87–92 (2006)CrossRefGoogle Scholar
  34. 34.
    Field, M., Sastry, P., Zhao, A., Richens, D.: Small vessel avulsion and acute aortic syndrome: a putative aetiology for initiation and propagation of blunt traumatic aortic injury at the isthmus. Med. Hypotheses 68, 1392–1398 (2007)CrossRefGoogle Scholar
  35. 35.
    Forman, J., Stacey, S., Evans, J., Kent, R.: Posterior acceleration as a mechanism of blunt traumatic injury of the aorta. J. Biomech. 41, 1359–1364 (2008)CrossRefGoogle Scholar
  36. 36.
    Fung, Y.: Biomechanics. Mechanical Properties of Living Tissues. Springer (1993)Google Scholar
  37. 37.
    Gao, F., Watanabe, M., Matusuzawa, T.: Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed. Eng. OnLine 5, 25 (2006)CrossRefGoogle Scholar
  38. 38.
    García-Herrera, C.M.: Mechanical behaviour of the human ascending aorta: characterization and numerical simulation. Ph.D. thesis, Universidad Politécnica de Madrid (2008) (in Spanish)Google Scholar
  39. 39.
    García-Herrera, C.M., Celentano, D.J., Cruchaga, M.A., Rojo, F.J., Atienza, J.M., Guinea, G.V., Goicolea, J.M.: Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Comput. Methods Biomech. Biomed. Eng. 15, 185–193 (2012a)CrossRefGoogle Scholar
  40. 40.
    García-Herrera, C.M., Celentano, D.J., Cruchaga, M.A.: Bending and pressurisation test of the human aoritc arch: experiments, modelling and simulation of a patient-specific case. Comput. Methods Biomech. Biomed. Eng. (2012b) (in press)Google Scholar
  41. 41.
    Gasser, C.T., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRefGoogle Scholar
  42. 42.
    Goicolea, J., Atienza, J.M., Burgos, R., García-Touchard, A., Goicolea, J., Guinea, G., Mingo, S., Montero, C., Salas, C.: Biomecánica aórtica y su correlación in vivo, estudio del comportamiento mecánico y de la rotura de aorta y su correlación ecocardiográfica, histológica y molecular. Hospital Universitario Puerta de Hierro, Protocolo de extracción de muestras (2006)Google Scholar
  43. 43.
    Govindjee, S., Mihalic, P.A.: Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136, 47–57 (1996)CrossRefzbMATHGoogle Scholar
  44. 44.
    Groenink, M., Langerak, S.E., Vanbavel, E., van der Wall, E.E., Mulder, B.J.M., van der Wal, A.C., Spaan, J.A.E.: The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc. Res. 43(2), 471–480 (1999)CrossRefGoogle Scholar
  45. 45.
    Grotenhuis, H.B., Ottenkamp, J., Westenberg, J.J.M., Bax, J.J., Kroft, L.J.M., Roos, A.: Reduced aortic elasticity and dilatation are associated with aortic regurgitation and left ventricular hyperthrophy in nonstenotic bicuspid aortic valve patients. J. Am. Coll. Cardiol. 49, 1660–1665 (2007)CrossRefGoogle Scholar
  46. 46.
    Guinea, G.V., Atienza, J.M., Elices, M., Argoncillo, P., Hayashi, K.: Thermomechanical beahavior of human carotid arteries in the pasive state. AJP—Heart Circ. Physiol. 288, 2940–2945 (2005)CrossRefGoogle Scholar
  47. 47.
    Guntheroth, W.G.: A critical review of the American College of Cardiology/American Heart Association practice guidelines on bicuspid aortic valve with dilated ascending aorta. Am. J. Cardiol. 102(1), 107–110 (2008)CrossRefGoogle Scholar
  48. 48.
    Hager, A., Kaemmerer, H., Rapp-Bernhardt, U., Blucher, S., Rapp, K., Bernhardt, T.M., Galanski, M., Hess, J.: Diameters of the thoracic aorta throughout life as measured with helical computed tomography. J. Thorac. Cardiovasc. Surg. 123(6), 1060–1066 (2002)CrossRefGoogle Scholar
  49. 49.
    Hall, A.J., Busse, E.F.G., McCarville, D.J., Burgess, J.J.: Aortic wall tension as a predictive factor for abdominal aortic aneurysm rupture: improving the selection of patients for abdominal aortic aneurysm repair. Ann. Vasc. Surg. 14(2), 152–157 (2000)CrossRefGoogle Scholar
  50. 50.
    Hariton, I., deBotton, G., Gasser, T.C., Holzapfel, G.A.: Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J. Theor. Biol. 248, 460–470 (2007)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Holzapfel, G.: Non Linear Solid Mechanics. Wiley, Chichester (2000)Google Scholar
  52. 52.
    Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289, H2048–H2058 (2005)CrossRefGoogle Scholar
  53. 53.
    Holzapfel, G.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238, 290–302 (2006)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Holzapfel, G.A., Sommer, G., Auer, M., Regitnig, P., Ogden, R.W.: Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35, 530–545 (2007)CrossRefGoogle Scholar
  55. 55.
    Humphrey, J.: Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)Google Scholar
  56. 56.
    Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues and Organs. Springer (2001)Google Scholar
  57. 57.
    Iliopoulos, D.C., Kritharis, E.P., Giagini, A.T., Papadodima, S.A., Sokolis, D.P.: Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects. J. Thorac. Cardiovasc. Surg. 137(1), 101–109 (2009)CrossRefGoogle Scholar
  58. 58.
    Kleinstreuer, C., Li, Z., Basciano, C., Seelecke, S., Farber, M.: Computational mechanics of nitinol stent grafts. J. Biomech. 41, 2370–2378 (2008)CrossRefGoogle Scholar
  59. 59.
    Kocis, K.C., Midgley, F.M., Ruckman, R.N.: Aortic arch complex anomalies: 20-year experience with symptoms, diagnosis, associated cardiac deffects, and surgical repair. Pediatr. Cardiol. 18, 127–132 (1997)CrossRefGoogle Scholar
  60. 60.
    Koullias, G., Modak, R., Tranquilli, M.: Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J. Thorac. Cardiovasc. Surg. 130, 677.e1–677.e9 (2005)Google Scholar
  61. 61.
    Kroon, M., Holzapfel, G.A.: Elastic properties of anisotropic vascular membranes examined by inverse analysis. Comput. Methods Appl. Mech. Eng. 198(45–46), 3622–3632 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Laurent, S., Cockcroft, J., Bortel, L.V., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., Struijker-Boudier, H.: Expert consensus document on arterial stiffness: methodological issued and clinical applications. Eur. Heart J. 27, 2588–2605 (2006)CrossRefGoogle Scholar
  63. 63.
    Li, Z., Kleinstreuer, C.: A new wall stress equation for aneurysm-rupture prediction. Ann. Biomed. Eng. 33, 209–213 (2005)CrossRefGoogle Scholar
  64. 64.
    Liu, C.Y., Chen, D., Teixido-Tura, G., Chugh, A.R., Redheuil, A., Gomes, A.S., Prince, M.R., Hundley, W., Bluemke, D.A., Lima, J.A.: Aortic size, distensibility, and pulse wave velocity changes with aging: longitudinal analysis from Multi-Ethnic Study of Atherosclerosis (MESA). J. Cardiovasc. Magn. Reson. 14, 126–127 (2012)CrossRefGoogle Scholar
  65. 65.
    Lonescu, I., Guilkey, J.E., Berzins, M., Kirby, R.M., Weiss, J.A.: Simulation of soft tissue failure using the material point method. J. Biomech. Eng. 128, 917–924 (2006)CrossRefGoogle Scholar
  66. 66.
    Lu, J., Zhou, X., Raghavan, M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demostration using abdominal aortic aneurysms. J. Biomech. 40, 693–696 (2007)CrossRefGoogle Scholar
  67. 67.
    Marquardt, D.: An algorithm for least squares. SIAM J. Appl. Math 11, 431–441 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Martino, E.S.D., Bohra, A., Geest, J.P.V., Gupta, N., Makaroum, M.S., Vorp, D.A.: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43(3), 570–576 (2006)CrossRefGoogle Scholar
  69. 69.
    Masson, I., Boutouyrie, P., Laurent, S., Humphrey, J.D., Zidi, M.: Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 41(12), 2618–2627 (2008)CrossRefGoogle Scholar
  70. 70.
    McGillicuddy, D., Rosen, P.: Diagnostic dilemmas and current controversies in blunt chest trauma. Emerg. Med. Clin. North Am. 25, 695–711 (2007)CrossRefGoogle Scholar
  71. 71.
    Medina, F., Wicker, R.B.: Geometric modeling of the human aorta for rapid prototyping using patient data and commercial software packages. In: Summer Bioengineering Conference, Florida, USA (2003)Google Scholar
  72. 72.
    Mohan, D., Melvin, J.: Failure properties of passive human aortic tissue. I uniaxial tension test. J. Biomech. 15(11), 887–902 (1982)CrossRefGoogle Scholar
  73. 73.
    Momma, K., Matsuoka, R., Takao, A.: Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr. Cardiol. 20, 97–102 (1999)CrossRefGoogle Scholar
  74. 74.
    Nichols, W., Rourke, M.O.: McDonald’s Flow in Arteries Theoretical, Experimental and Clinical Principles, 3rd edn. Oxford University, New York (1990)Google Scholar
  75. 75.
    Nollen, G.J., Groenink, M., Tijssen, J.G.P., van de Wall, E.E., Mulder, B.J.M.: Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan sydrome. Eur. Heart J. 25, 1146–1152 (2004)CrossRefGoogle Scholar
  76. 76.
    Ogden, R.W.: Non-linear Elastic Deformations. Dover Publications Inc., New York (1984)zbMATHGoogle Scholar
  77. 77.
    Ogden, R.: Nonlinear Elasticity with Application to Material Modelling. Polish Academy of Sciences (2003)Google Scholar
  78. 78.
    Oijen, C.V.: Mechanics and design of fiber-reinforced vascular prostheses. Ph.D. thesis, Technische Universiteit Eindhoiven (2003)Google Scholar
  79. 79.
    Okamoto, R.J., Wagenseil, J.E., DeLong, W.R., Peterson, S.J., Kouchoukos, N.T., Sundt III, T.M.: Mechanical properties of dilated human ascending aorta. Ann. Biomed. Eng. 30, 624–635 (2002)CrossRefGoogle Scholar
  80. 80.
    Pape, L.A., Tsai, T.T., Isselbacher, E.M., Oh, J.K., O’Gara, P.T., Evangelista, A., Fattori, R., Meinhardt, G., Trimarchi, S., Bossone, E., Suzuki, T., Cooper, J.V., Froehlich, J.B., Nienaber, C.A., Eagle, K.A.: Aortic diameter > 5.5 cm is not a good predictor of type A aortic dissection. Observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation 1120–1127 (2007)Google Scholar
  81. 81.
    Pasic, M., Ewert, R., Engel, M., Franz, N., Bergs, P., Kuppe, H., Hetzer, R.: Aortic rupture and concomitant transection of the left bronchus after blunt chest trauma. Chest 117, 1508–1510 (2000)CrossRefGoogle Scholar
  82. 82.
    Prendergast, P.J., Lally, C., Daly, S., Reid, A.J., Lee, T.C., Quinn, D., Dolan, F.: Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125, 692–699 (2003)CrossRefGoogle Scholar
  83. 83.
    Putz, R., Pabst, R., Weiglein A.: Sobotta Atlas of Human Anatomic Atlas, vol. 2. Lippincott Williams & Wilkins (2001)Google Scholar
  84. 84.
    Raghavan, M.L., Webster, M., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm assessment using a new mathematical model. Ann. Biomed. Eng. 24(5), 573–582 (1996)CrossRefGoogle Scholar
  85. 85.
    Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4), 475–482 (2000)CrossRefGoogle Scholar
  86. 86.
    Raghavan, M.L., Kratzberg, J., de Tolosa, E.M.C., Hanaoka, M.M., Walker, P., da Silva, E.S.: Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39, 3010–3016 (2006)CrossRefGoogle Scholar
  87. 87.
    Richens, D., Field, M., Neale, M., Oakley, C.: The mechanism of injury in blunt traumatic rupture of the aorta. Eur. J. Cardiothorac. Surg. 21, 288–293 (2002)CrossRefGoogle Scholar
  88. 88.
    Richens, D., Field, M., Hashim, S., Neale, M., Oakley, C.: A finite element model of blunt traumatic aortic rupture. Eur. J. Cardiothorac. Surg. 25, 1039–1047 (2004)CrossRefGoogle Scholar
  89. 89.
    Rizzo, J.A., Coady, M.A., Elefteriades, J.A.: Interpreting data on thoracic aortic aneurysms. Statistical issues. Cardiol Clin. 17(4), 797–805 (1999)CrossRefGoogle Scholar
  90. 90.
    Roach, M.R., Burton, A.C.: The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35, 681–690 (1957)CrossRefGoogle Scholar
  91. 91.
    Rodríguez, J., Goicolea, J.M., Gabaldón, F.: A volumetric model for growth of arterial walls with arbitrary geometry and loads. J. Biomech. 40, 961–971 (2007)CrossRefGoogle Scholar
  92. 92.
    Rose, J.L., Lalande, A., Bouchot, O., Bourennane, E.B., Walker, P.M., Ugolini, P., Revol-Muller, C., Cartier, R., Brunotte, F.: Magn. Reson. Imag. 28, 255–263 (2010)Google Scholar
  93. 93.
    Roy, C.S.: The elastic properties of the arterial wall. J. Physiol. 3, 125–162 (1880)CrossRefGoogle Scholar
  94. 94.
    Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000)CrossRefzbMATHGoogle Scholar
  95. 95.
    Sanmartín, M., Goicolea, J., García, C., García, J., Crespo, A., Rodríguez, J., Goicolea, J.M.: Influencia de la tensión de cizallamiento en la reestenosis intra-stent: Estudio in vivo con reconstrucción 3D y dinámica de fluidos computacional. Revista Española de Cardiología 59(1), 20–27 (2006)CrossRefGoogle Scholar
  96. 96.
    Schulze-Bauer, C., Holzapfel, G.: Determination of constitutive equations for human arteries from clinical data. J. Biomech. 36, 165–169 (2003)CrossRefGoogle Scholar
  97. 97.
    Spencer, A.: Continuum theory of the mechanics of fibre-reinforced composites. CISM 282, 1–32 (1984)Google Scholar
  98. 98.
    Tochii, M., Ando, M., Takagi, Y., Yamashita, M., Hoshino, R., Akita, K.: Total arch replacement for a distal arch aneurysm with aberrant right subclavian artery. Gen. Thorac. Cardiovasc. Sur. 56, 22–24 (2008)CrossRefGoogle Scholar
  99. 99.
    Vande Geest, J.P., Di Martino, E.S., Vorp, D.A.: An analysis of the complete strain field within Flexcercell\(^{\text{ TM }}\) membranes. J. Biomech. 37, 1923–1928 (2004)CrossRefGoogle Scholar
  100. 100.
    Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)CrossRefGoogle Scholar
  101. 101.
    Vorp, D.A., Schiro, B.J., Ehrlich, M.P., Juvonen, T.S., Ergin, M.A., Griffith, B.P.: Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4), 1210–1214 (2003)CrossRefGoogle Scholar
  102. 102.
    Vorp, D.A., Vande Geest, J.P.: Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25(8), 1558–1566 (2005)CrossRefGoogle Scholar
  103. 103.
    Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902 (2007)CrossRefGoogle Scholar
  104. 104.
    Wolinsky, H., Glagov, S.: Structural basis for the static mechanical properties of the aortic media. Circul. Res. 14, 400–413 (1964)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Claudio M. García-Herrera
    • 1
    Email author
  • Diego J. Celentano
    • 2
  • Marcela A. Cruchaga
    • 1
  • Gustavo V. Guinea
    • 3
  1. 1.Departamento de Ingeniería MecánicaUniversidad de Santiago de Chile, USACHSantiago de ChileChile
  2. 2.Departamento de Ingeniería Mecánica y MetalúrgicaPontificia Universidad Católica de ChileSantiago de ChileChile
  3. 3.E.T.S.I. Caminos, Canales y PuertosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations